
CSE333, Winter 2026L05: Modules, C Preprocessor

1

About how long did Exercise 3 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours

F. I didn’t submit / I prefer not to say

pollev.com/cse333a

CSE333, Winter 2026L05: Modules, C Preprocessor

Systems Programming
Modules, C Preprocessor

Instructors:

Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE333, Winter 2026L05: Modules, C Preprocessor

Relevant Course Information

❖ Exercise 4 out today, due Friday before 11 AM

❖ Homework 1 due a week from Thursday

▪ You should be well under way now

▪ Be sure to read headers carefully while implementing

▪ Use git add/commit/push regularly to save work – easier to share

with partner and course staff

❖ Section this week will involve debugging!

❖ Correction from Lecture 4

▪ Accessing one past the end of an array is undefined behavior
3

CSE333, Winter 2026L05: Modules, C Preprocessor

Lecture Outline (1/3)

❖ Generic Data Structures in C

❖ Modules & Interfaces

❖ C Preprocessor Intro

4

CSE333, Winter 2026L05: Modules, C Preprocessor

Simple Linked List in C

❖ Each node in a linear, singly-linked list contains:

▪ Some element as its payload

▪ A pointer to the next node in the linked list

• This pointer is NULL (or some other indicator) in the last node in the

list

5

Element Z Element XElement Y ∅

head

CSE333, Winter 2026L05: Modules, C Preprocessor

Linked List Node

❖ Let’s represent a linked list node with a struct

▪ For now, assume each element is an int

6

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

int main(int argc, char** argv) {
 Node n1, n2;

 n1.element = 1;
 n1.next = &n2;
 n2.element = 2;
 n2.next = NULL;
 return EXIT_SUCCESS;
}

manual_list.c

2 ∅
element next

n2

1

element next

n1

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (1/14)

7

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

push_list.c

(main) list

Arrow points to
next instruction.

∅

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (2/14)

8

push_list.c

element next

(Push) head

(main) list

1(Push) e

(Push) n

∅
typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

∅

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (3/14)

9

push_list.c

element next

(Push) head

(main) list

1(Push) e

(Push) n

∅

∅

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (4/14)

10

push_list.c

element next

(Push) head

(main) list

1(Push) e

(Push) n

∅

∅

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (5/14)

11

push_list.c

1

element next

(Push) head

(main) list

1(Push) e

(Push) n

∅

∅

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (6/14)

12

push_list.c

1

element next

(Push) head

(main) list

1(Push) e

(Push) n

∅

∅

∅

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (7/14)

13

push_list.c

1

element next

(main) list

∅

(Push) head

1(Push) e

(Push) n

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (8/14)

14

push_list.c

1

element next

(main) list

∅

(Push) head

2(Push) e

(Push) n

element next

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (9/14)

15

push_list.c

1

element next

(main) list

∅

(Push) head

2(Push) e

(Push) n

element next

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (10/14)

16

push_list.c

1

element next

(main) list

∅

(Push) head

2(Push) e

(Push) n

element next

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (11/14)

17

push_list.c

1

element next

(main) list

∅

(Push) head

2(Push) e

(Push) n

2

element next

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (12/14)

18

push_list.c

1

element next

(main) list

∅

(Push) head

2(Push) e

(Push) n

2

element next

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (13/14)

19

push_list.c

1

element next

(main) list

∅

(Push) head

2(Push) e

(Push) n

2

element next

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

Push Onto List (14/14)

20

push_list.c

1

element next

∅

2

element next

typedef struct node_st {
 int element;
 struct node_st* next;
} Node;

Node* Push(Node* head, int e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

int main(int argc, char** argv) {
 Node* list = NULL;
 list = Push(list, 1);
 list = Push(list, 2);
 return EXIT_SUCCESS;
}

CSE333, Winter 2026L05: Modules, C Preprocessor

A Generic Linked List

❖ Let’s generalize the linked list element type

▪ Let customer decide type (instead of always int)

▪ Idea: let them use a generic pointer (i.e., a void*)

21

typedef struct node_st {
 void* element;
 struct node_st* next;
} Node;

Node* Push(Node* head, void* e) {
 Node* n = (Node*) malloc(sizeof(Node));
 assert(n != NULL); // crashes if false
 n->element = e;
 n->next = head;
 return n;
}

next

element

next

element

∅

CSE333, Winter 2026L05: Modules, C Preprocessor

Using a Generic Linked List

❖ Type casting should be used with void* (raw address)

▪ Before pushing, should convert to void*

▪ Convert back to data type when accessing

22

typedef struct node_st {
 void* element;
 struct node_st* next;
} Node;

Node* Push(Node* head, void* e); // assume last slide’s code

int main(int argc, char** argv) {
 char* hello = "Hi there!";
 char* goodbye = "Bye bye.";
 Node* list = NULL;

 list = Push(list, (void*) hello);
 list = Push(list, (void*) goodbye);
 printf("payload: '%s'\n", (char*) ((list->next)->element));
 return EXIT_SUCCESS;
} manual_list_void.c

STYLE
TIP

CSE333, Winter 2026L05: Modules, C Preprocessor

Resulting Memory Diagram

23

next

element

next

element

. \0y eby eB

! \0r eh etiH

(main) list (main) goodbye (main) hello

∅

What would happen if we execute *(list->next) = *list?

CSE333, Winter 2026L05: Modules, C Preprocessor

Something’s Fishy…

❖ A (benign) memory leak!

❖ Try running with Valgrind:

24

int main(int argc, char** argv) {
 char* hello = "Hi there!";
 char* goodbye = "Bye bye.";
 Node* list = NULL;

 list = Push(list, (void*) hello);
 list = Push(list, (void*) goodbye);
 return EXIT_SUCCESS;
}

$ gcc –Wall -g –o manual_list_void manual_list_void.c
$ valgrind --leak-check=full ./manual_list_void

CSE333, Winter 2026L05: Modules, C Preprocessor

Lecture Outline (2/3)

❖ Generic Data Structures in C

❖ Modules & Interfaces

❖ C Preprocessor Intro

25

CSE333, Winter 2026L05: Modules, C Preprocessor

Multi-File C Programs

❖ Let’s create a linked list module

▪ A module is a self-contained piece of an overall program

• Has externally visible functions that customers can invoke

• Has externally visible typedefs, and perhaps global variables, that
customers can use

• May have internal functions, typedefs, or global variables that
customers should not look at

▪ Can be developed independently and re-used in different projects

❖ The module’s interface is its set
of public functions, typedefs,
and global variables

26

main program

linked
list

hash
table

CSE333, Winter 2026L05: Modules, C Preprocessor

C Header Files

❖ Header: A file whose only purpose is to be #include’d

▪ Generally has a filename .h extension

▪ Holds the variables, types, and function prototype declarations

that make up the interface to a module

▪ There are <system-defined> and "programmer-defined" headers

❖ Main Idea:

▪ Every name.c is intended to be a module that has a name.h

▪ name.h declares the interface to that module

▪ Other C files can use module name by #include-ing name.h

• They should assume as little as possible about the implementation in

name.c

27

CSE333, Winter 2026L05: Modules, C Preprocessor

C Module Conventions (1/2)

❖ File contents:

▪ .h files only contain declarations, never definitions

▪ .c files never contain prototype declarations for functions that
are intended to be exported through the module interface

▪ Public-facing functions are ModuleName_FunctionName()
and take a pointer to “this” as their first argument

❖ Including:

▪ NEVER #include a .c file – only #include .h files

▪ #include all of headers you reference, even if another header
(transitively) includes some of them

❖ Compiling:

▪ Any .c file with an associated .h file should be able to be
compiled (together via #include) into a .o file

28

STYLE
TIP

CSE333, Winter 2026L05: Modules, C Preprocessor

C Module Conventions (2/2)

❖ Commenting:

▪ If a function is declared in a header file (.h) and defined in a C file

(.c), the header needs full documentation because it is the public

specification

• Don’t copy-paste the comment into the C file (don’t want two copies

that can get out of sync)

▪ If prototype and implementation are in the same C file:

• School of thought #1: Full comment on the prototype at the top of

the file, no comment (or “declared above”) on code

• School of thought #2: Prototype is for the compiler and doesn’t need

comment; comment the code to keep them together

29

e.g., 333
project code

STYLE
TIP

CSE333, Winter 2026L05: Modules, C Preprocessor

Lecture Outline (3/3)

❖ Generic Data Structures in C

❖ Modules & Interfaces

❖ C Preprocessor Intro

30

CSE333, Winter 2026L05: Modules, C Preprocessor

#include and the C Preprocessor

❖ The C preprocessor (cpp) is a sequential and stateful

search-and-replace text-processor that transforms your

source code before the compiler runs

▪ The input is a C file (text) and the output is still a C file (text)

▪ It processes the directives it finds in your code (#directive)

• e.g. #include "ll.h" is replaced by the post-processed

content of ll.h

• e.g. #define PI 3.1415 defines a symbol and replaces later

occurrences

• Several others that we’ll see soon…

▪ Run automatically on your behalf by gcc during compilation

31

#include "ll.h"

#define PI 3.1415

CSE333, Winter 2026L05: Modules, C Preprocessor

A. #define

B. BAR

C. FOO

D. verylong

E. // a comment

32

Exploration: Which of the following text will remain
in the preprocessor output?

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h

Keep in mind:

1. Pre-processor goes line by line

2. builds up “state” as it processes directives

pollev.com/cse333a

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (1/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

33

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

Arrow points to
next line to process

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (2/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

34

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

Pre-processor state

FOO 1

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (3/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

35

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

Pre-processor state

FOO 1

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (4/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

36

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

Pre-processor state

FOO 1

BAR 2 + 1

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (5/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

37

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

typedef long long int verylong;

Pre-processor state

FOO 1

BAR 2 + 1

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (6/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

38

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

typedef long long int verylong;
int main(int argc, char** argv) {

Pre-processor state

FOO 1

BAR 2 + 1

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (7/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

39

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

typedef long long int verylong;
int main(int argc, char** argv) {
 int x = 1;

Pre-processor state

FOO 1

BAR 2 + 1

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (8/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

40

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

typedef long long int verylong;
int main(int argc, char** argv) {
 int x = 1;
 int y = 2 + 1;

Pre-processor state

FOO 1

BAR 2 + 1

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (9/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

41

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

typedef long long int verylong;
int main(int argc, char** argv) {
 int x = 1;
 int y = 2 + 1;
 verylong z = 1 + 2 + 1;

Pre-processor state

FOO 1

BAR 2 + 1

{

CSE333, Winter 2026L05: Modules, C Preprocessor

C Preprocessor Example (10/10)

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

42

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
 int x = FOO; // a comment
 int y = BAR;
 verylong z = FOO + BAR;
 return 0;
}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.c$ cpp –P cpp_example.c out.c
$ cat out.c

typedef long long int verylong;
int main(int argc, char** argv) {
 int x = 1;
 int y = 2 + 1;
 verylong z = 1 + 2 + 1;
 return 0;
}

Pre-processor state

FOO 1

BAR 2 + 1

CSE333, Winter 2026L05: Modules, C Preprocessor

Program Using a Linked List

43

#include <stdlib.h>
#include <assert.h>
#include "ll.h"

Node* Push(Node* head,
 void* element) {
 ... // implementation here
}

typedef struct node_st {
 void* element;
 struct node_st* next;
} Node;

Node* Push(Node* head,
 void* element);

#include "ll.h"

int main(int argc, char** argv) {
 Node* list = NULL;
 char* hi = "hello";
 char* bye = "goodbye";

 list = Push(list, (void*)hi);
 list = Push(list, (void*)bye);

 ...

 return 0;
}

ll.c

ll.h

example_ll_customer.c

CSE333, Winter 2026L05: Modules, C Preprocessor

Compiling the Program

❖ Four parts:

▪ 1/2) Compile example_ll_customer.c into an object file

▪ 2/1) Compile ll.c into an object file

▪ 3) Link both object files into an executable

▪ 4) Test, Debug, Rinse, Repeat

44

$ gcc –Wall –g –o example_ll_customer.o –c example_ll_customer.c
$ gcc –Wall –g –o ll.o –c ll.c
$ gcc -g –o example_ll_customer ll.o example_ll_customer.o
$./example_ll_customer
Payload: 'yo!'
Payload: 'goodbye'
Payload: 'hello'
$ valgrind –leak-check=full ./example_ll_customer
... etc ...

CSE333, Winter 2026L05: Modules, C Preprocessor

But There’s a Problem with #include

❖ What happens when we compile foo.c?

45

struct Pair {
 int a, b;
};

#include "pair.h"

// a useful function
struct Pair* MakePair(int a, int b);

#include "pair.h"
#include "util.h"

int main(int argc, char** argv) {
 // do stuff here
 ...
 return 0;
}

pair.h
util.h

foo.c

CSE333, Winter 2026L05: Modules, C Preprocessor

A Problem with #include

❖ What happens when we compile foo.c?

❖ foo.c includes pair.h twice!

▪ Second time is indirectly via util.h

▪ Struct definition shows up twice

• Can see using cpp

46

$ gcc –Wall –g -o foo foo.c
In file included from util.h:1,
 from foo.c:2:
pair.h:1:8: error: redefinition of 'struct Pair'
 1 | struct Pair { int a, b; };
 | ^~~~
In file included from foo.c:1:
pair.h:1:8: note: originally defined here
 1 | struct Pair { int a, b; };
 | ^~~~

CSE333, Winter 2026L05: Modules, C Preprocessor

Preprocessor Tricks: Header Guards

❖ A standard C Preprocessor trick to deal with this

▪ Uses macro definition (#define) in combination with

conditional compilation (#ifndef and #endif)

47

#ifndef PAIR_H_
#define PAIR_H_

struct Pair {
 int a, b;
};

#endif // PAIR_H_

#ifndef UTIL_H_
#define UTIL_H_

#include "pair.h"

// a useful function
struct Pair* MakePair(int a, int b);

#endif // UTIL_H_

pair.h util.h

#include "pair.h"
#include "util.h"

int main(int argc, char** argv) {
 // do stuff here

foo.c

STYLE
TIP

CSE333, Winter 2026L05: Modules, C Preprocessor

Preprocessor Tricks: Constants

❖ A way to deal with “magic constants”

48

int globalbuffer[1000];

void circalc(float rad,
 float* circumf,
 float* area) {
 *circumf = rad * 2.0 * 3.1415;
 *area = rad * 3.1415 * 3.1415;
}

#define BUFSIZE 1000
#define PI 3.14159265359

int globalbuffer[BUFSIZE];

void circalc(float rad,
 float* circumf,
 float* area) {
 *circumf = rad * 2.0 * PI;
 *area = rad * PI * PI;
}

Bad code
(littered with magic constants)

Better code

STYLE
TIP

CSE333, Winter 2026L05: Modules, C Preprocessor

Extra Exercise #1

❖ Extend the linked list program we covered in class:

▪ Add a function that returns the number of elements in a list

▪ Implement a program that builds a list of lists

• i.e. it builds a linked list where each element is a (different) linked list

▪ Bonus: design and implement a “Pop” function

• Removes an element from the head of the list

• Make sure your linked list code, and customers’ code that uses it,

contains no memory leaks

49

CSE333, Winter 2026L05: Modules, C Preprocessor

Extra Exercise #2

❖ Implement and test a binary search tree

▪ https://en.wikipedia.org/wiki/Binary_search_tree

• Don’t worry about making it balanced

▪ Implement key insert() and lookup() functions

• Bonus: implement a key delete() function

▪ Implement it as a C module

• bst.c, bst.h

▪ Implement test_bst.c

• Contains main() and tests out your BST

50

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Binary_search_tree

CSE333, Winter 2026L05: Modules, C Preprocessor

Extra Exercise #3

❖ Implement a Complex number module

▪ complex.c, complex.h

▪ Includes a typedef to define a complex number

• a + b𝑖, where a and b are doubles

▪ Includes functions to:

• add, subtract, multiply, and divide complex numbers

▪ Implement a test driver in test_complex.c

• Contains main()

51

	Slide 1: About how long did Exercise 3 take you?
	Slide 2: Systems Programming Modules, C Preprocessor
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/3)
	Slide 5: Simple Linked List in C
	Slide 6: Linked List Node
	Slide 7: Push Onto List (1/14)
	Slide 8: Push Onto List (2/14)
	Slide 9: Push Onto List (3/14)
	Slide 10: Push Onto List (4/14)
	Slide 11: Push Onto List (5/14)
	Slide 12: Push Onto List (6/14)
	Slide 13: Push Onto List (7/14)
	Slide 14: Push Onto List (8/14)
	Slide 15: Push Onto List (9/14)
	Slide 16: Push Onto List (10/14)
	Slide 17: Push Onto List (11/14)
	Slide 18: Push Onto List (12/14)
	Slide 19: Push Onto List (13/14)
	Slide 20: Push Onto List (14/14)
	Slide 21: A Generic Linked List
	Slide 22: Using a Generic Linked List
	Slide 23: Resulting Memory Diagram
	Slide 24: Something’s Fishy… 🐟
	Slide 25: Lecture Outline (2/3)
	Slide 26: Multi-File C Programs
	Slide 27: C Header Files
	Slide 28: C Module Conventions (1/2)
	Slide 29: C Module Conventions (2/2)
	Slide 30: Lecture Outline (3/3)
	Slide 31: #include and the C Preprocessor
	Slide 32: Exploration: Which of the following text will remain in the preprocessor output?
	Slide 33: C Preprocessor Example (1/10)
	Slide 34: C Preprocessor Example (2/10)
	Slide 35: C Preprocessor Example (3/10)
	Slide 36: C Preprocessor Example (4/10)
	Slide 37: C Preprocessor Example (5/10)
	Slide 38: C Preprocessor Example (6/10)
	Slide 39: C Preprocessor Example (7/10)
	Slide 40: C Preprocessor Example (8/10)
	Slide 41: C Preprocessor Example (9/10)
	Slide 42: C Preprocessor Example (10/10)
	Slide 43: Program Using a Linked List
	Slide 44: Compiling the Program
	Slide 45: But There’s a Problem with #include
	Slide 46: A Problem with #include
	Slide 47: Preprocessor Tricks: Header Guards
	Slide 48: Preprocessor Tricks: Constants
	Slide 49: Extra Exercise #1
	Slide 50: Extra Exercise #2
	Slide 51: Extra Exercise #3

