W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

About how long did Exercise 3 take you?

nmoo®p

[2, 4) hours

[4, 6) hours

[6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

CSE333, Winter 2026

Systems Programming

Modules, C Preprocessor

Instructors:

Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister

Violet Monserate

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

CSE333, Winter 2026

Relevant Course Information

- Exercise 4 out today, due Friday before 11 AM

+» Homework 1 due a week from Thursday
" You should be well under way now
= Be sure to read headers carefully while implementing

= Use git add/commit/push regularly to save work — easier to share
with partner and course staff

- Section this week will involve debugging!

» Correction from Lecture 4

= Accessing one past the end of an array is undefined behavior

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Lecture Outline (1/3)

+ @eneric Data Structures in C
«» Modules & Interfaces

« C Preprocessor Intro

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Simple Linked List in C

+» Each node in a linear, singly-linked list contains:
= Some element as its payload

= A pointer to the next node in the linked list

« This pointer is NULL (or some other indicator) in the last node in the
list

Element Z C%::i> Element Y C%==i> ElementX | (@

A

head

~

W UNIVERSITY of WASHINGTON

Linked List Node

LO5: Modules, C Preprocessor

CSE333, Winter 2026

+ Let’s represent a linked list node with a struct

" For now, assume each elementisan int

(fypedef struct node_st {
int element;
struct node_st*x next;
} Node;

Node nl, n2;

nl.element = 1;
nl.next = &n2;
n2.element = 2;
n2.next = NULL;
return EXIT_SUCCESS;

\;

int main(int argc, char*xx argv) {

~

manual_list.c

element next

nl 1 Q
n2 2 1)

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Arrow points to

Push Onto List (1/14) next instruction.

(typedef struct node_st {
int element; (main) list @
struct node_st* next;

} Node;

Nodex Push(Node* head, int e) {
Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false
n->element = e;
n->next = head;
return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;

==y list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

}

\. J

push_list.c

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Push Onto List (2/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

Nodex Push(Node* head, int e) {

==y Nodex n = (Nodex) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false
n->element = e;

n->next = head;

return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

}
\

push_list.c

CSE333, Winter 2026

(main) List| @

(Push) head| @

(Push) e
(Push) N
element

next

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Push Onto List (3/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

Nodex Push(Node* head, int e) {

Nodex n = (Node*) malloc(sizeof(Node));
==y assert(n != NULL); // crashes if false
n->element = e;
n->next = head;
return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

}
\

push_list.c

CSE333, Winter 2026

(main) List

(Push) head| @

(Push) e
(Push) N
element

next

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Push Onto List (4/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

Nodex Push(Node* head, int e) {
Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false
== n->element = e;
n->next = head;
return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

}
\

push_list.c

CSE333, Winter 2026

(main) List| @

(Push) head| @

(Push) e
(Push) N
element

next

10

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Push Onto List (5/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

Nodex Push(Node* head, int e) {
Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false
n->element = e;

===y n->next = head;

return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

}
\

push_list.c

CSE333, Winter 2026

(main) List

(Push) head| @

(Push) e

(Push) N
element next

1

11

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Push Onto List (6/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

Nodex Push(Node* head, int e) {
Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false
n->element = e;
n->next = head;

=gy return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

}
\

push_list.c

CSE333, Winter 2026

(main) List

(Push) head| @

(Push) e
(Push) N
element next
1 1)

12

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Push Onto List (7/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

Nodex Push(Node* head, int e) {
Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false
n->element = e;
n->next = head;

=gy return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);

==y |ist = Push(list, 2);

return EXIT_SUCCESS;

}
\

push_list.c

(main) List

(Push) head

(Push) e

(Push) N

CSE333, Winter 2026

element

next

1

@

13

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Push Onto List (8/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

Nodex Push(Node* head, int e) {

==y Nodex n = (Nodex) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false
n->element = e;

n->next = head;

return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

}
\

push_list.c

(main) List

(Push) head

CSE333, Winter 2026

(Push) e

(Push)

_ element next
1 1)
element next

14

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Push Onto List (9/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

Nodex Push(Node* head, int e) {

Nodex n = (Node*) malloc(sizeof(Node));
==y assert(n != NULL); // crashes if false
n->element = e;
n->next = head;
return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

}
\

push_list.c

(main) List

(Push) head
(Push) e

(Push)

element
S~

CSE333, Winter 2026

next

1

@

element

next

15

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Push Onto List (10/14)

(typedef struct node_st {)
int element; (main) list
struct node_st* next;
} Node; |
|
Nodex Push(Nodex* head, int e) { (Push) head |

Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false (Push) el 2
== n->element = e;
n->next = head;
return n;

(Push)

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

element next
S~

1 |2

element next

}

\. J

push_list.c

16

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Push Onto List (11/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

(main) List

Nodex Push(Nodex* head, int e) { (Push) head
Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes if false (Push) el 2
n->element = e;

==y n->next = head;

return n;

(Push)

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

element next
S~

1 |2

element next

2

}

\. J

push_list.c

17

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Push Onto List (12/14)

(typedef struct node_st {)
int element; (main) list
struct node_st* next;
} Node; |
|
Nodex Push(Nodex* head, int e) { (Push) head |

Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes if false (Push) el 2
n->element = e;
n->next = head;
m—gp return n; (Push)
b

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

element next
S~

1 |2

element next
2

}

\. J

push_list.c

18

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Push Onto List (13/14)

(typedef struct node_st {)
int element; (main) list
struct node_st* next;
} Node;
Nodex Push(Nodex* head, int e) { (Push) head

Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false (Push) el 2
n->element = e;
n->next = head;
m—gp return n;

}

(Push)

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);

memlp return EXIT_SUCCESS;

}

\. J

push_list.c

element next

1 |2

C element next
k,i\J

19

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Push Onto List (14/14)

(typedef struct node_st {
int element;
struct node_st* next;
} Node;

Nodex Push(Node* head, int e) {

n->element = e;
n->next = head;
return n;

}

int main(int argc, char*xx argv) {
Nodex 1list = NULL;
list = Push(list, 1);
list = Push(list, 2);
return EXIT_SUCCESS;

ﬂ}

Nodex n = (Node*) malloc(sizeof(Node));
assert(n != NULL); // crashes 1if false

CSE333, Winter 2026

push_list.c

element next
1 1)
element
2

20

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

A Generic Linked List

+ Let’s generalize the linked list element type

CSE333, Winter 2026

" Let customer decide type (instead of always 1nt)

" |dea: let them use a generic pointer (i.e., a voi1dx)

(typedef struct node_st {
voidx element;
struct node_stx next;
} Node;

Node* Push(Nodex head, voidx e) {
n->element = e;

n->next = head;
return n;

Node* n = (Nodex) malloc(sizeof(Node));
assert(n != NULL); // crashes if false

element >
next

element T:‘:‘>
next| (@

21

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

]

'=I‘-._?<|
s
A

—
"\v’n

Using a Generic Linked List

+ Type casting should be used with vo1dx* (raw address)
= Before pushing, should convert to voidx*

" Convert back to data type when accessing

rtypedef struct node_st {
void* element;
struct node_stx next;
} Node;

Node* Push(Nodex head, void* e); // assume last slide’s code

int main(int argc, char*xx argv) {
char* hello = "Hi there!";
char* goodbye = '"Bye bye.'";
Nodex 1list = NULL;

list = Push(list, (void*) hello);
list = Push(list, (void*) goodbye);
printf("payload: '%s'\n", (charx) ((list->next)->element));
return EXIT_SUCCESS;
} manual_list_void.c |

22

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Resulting Memory Diagram

(main) list (main) goodbye Q (main) hello

element| c— I B|ly| e bly]|e \O
element| c— q H | i tlh|lel|lr|e]|! |\O

next| @

What would happen if we execute x (list->next) = xlist?

23

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

CSE333, Winter 2026

Something’s Fishy... €

+ A (benign) memory leak!

int main(int argc, charxx argv) {
char* hello = "Hi there!'";
char* goodbye = '"Bye bye.'";
Nodex 1list = NULL;

list = Push(list, (voidx) hello);
list Push(list, (void*) goodbye);
return EXIT_SUCCESS;

— }
+ Try running with Valgrind:

$ gcc -Wall -g -o manual_list_void manual_list_void.c

$ valgrind --leak-check=full ./manual_list_void

24

WA UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Lecture Outline (2/3)

<+ Generic Data Structures in C
+» Modules & Interfaces

« C Preprocessor Intro

CSE333, Winter 2026

25

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Multi-File C Programs

+ Let’s create a linked list module
= A module is a self-contained piece of an overall program

- Has externally visible functions that customers can invoke

- Has externally visible typedefs, and perhaps global variables, that
customers can use

- May have internal functions, typedefs, or global variables that
customers should not look at

" Can be developed independently and re-used in different projects

+ The module’s interface is its set TR BT
of public functions, typedefs,

and global variables linked
list

26

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

C Header Files

+» Header: A file whose only purpose is to be #1nc Lude’d
= Generally has a filename . h extension

" Holds the variables, types, and function prototype declarations
that make up the interface to a module

" There are <system-defined> and "programmer-defined" headers

«» Main ldea:
= Every name. c is intended to be a module that has a name. h
" name. h declares the interface to that module

= QOther C files can use module name by #1nc Lude-ing name. h

- They should assume as little as possible about the implementation in
name.c

27

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

C Module Conventions (1/2) STYLE

« File contents:

= . hfiles only contain declarations, never definitions

= . c files never contain prototype declarations for functions that
are intended to be exported through the module interface

= Public-facing functions are ModuleName_FunctionName ()
and take a pointer to “th1s” as their first argument

+ Including:
" NEVER #include a .c file—only #1nclude . h files

= #include all of headers you reference, even if another header
(transitively) includes some of them

+» Compiling:

= Any . c file with an associated . h file should be able to be
compiled (together via #1nclude)intoa .o file

28

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

C Module Conventions (2/2) STHE

+» Commenting:

= |f a function is declared in a header file (. h) and defined in a C file
(.), the header needs full documentation because it is the public
specification

- Don’t copy-paste the comment into the C file (don’t want two copies
that can get out of sync)

= |f prototype and implementation are in the same C file:

—> + School of thought #1: Full comment on the prototype at the top of
the file, no comment (or “declared above”) on code

« School of thought #2: Prototype is for the compiler and doesn’t need
comment; comment the code to keep them together

e.qg., 333
project code

29

WA UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Lecture Outline (3/3)

<+ Generic Data Structures in C
+ Modules & Interfaces

+ C Preprocessor Intro

CSE333, Winter 2026

30

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

#include and the C Preprocessor

+ The C preprocessor (cpp) is a sequential and stateful
search-and-replace text-processor that transforms your
source code before the compiler runs
" The inputis a C file (text) and the output is still a C file (text)

" |t processes the directives it finds in your code (#directive)

- e.g. [#include "lLLl.h"] is replaced by the post-processed
contentof L1.h

- e.g. [#define PI 3.1415] defines a symbol and replaces later
occurrences

« Several others that we’ll see soon...

" Run automatically on your behalf by gcc during compilation

31

WA UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

Exploration: Which of the following text will remain
in the preprocessor output?

Keep v mind:
#define BAR 2 + FOO 1. Pre-processor goes live by live
[typedef long long int verylong; 2. builds up “state” as it processes directives
cpp_example.h
[#define FOO 1) A.
#include "cpp_example.h" B. BAR

int main(int argc, char*xx argv) {
int x = FOO; // a comment C. FOO
int y = BAR;
verylong z = FOO + BAR;
return 0;

! E. // acomment

\ J

cpp_example.c 3

D. verylong

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

CSE333, Winter 2026

Arrow points to

C Preprocessor Example (1/10) next line to process

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

= “—P” option suppresses some extra debugging annotations

[#define BAR 2 + FOO

typedef long long int verylong;

$ cpp -P cpp_example.c out.c

cpp_example.h $ cat out.c

'P(#def'ine FOO 1]

#include "cpp_example.h"

int main(int argc, charxx argv) {
int x = FOO; // a comment
int y = BAR;
verylong z = FOO + BAR;
return

b

J

cpp_example.c

33

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

CSE333, Winter 2026

C Preprocessor Example (2/10)

Pre-processor state

FOO 1

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

= “—P” option suppresses some extra debugging annotations

[#define BAR 2 + FOO

typedef long long int verylong;

$ cpp -P cpp_example.c out.c

cpp_example.h $ cat out.c

e ftrme—F0—31—]

= #include "cpp_example.h"

int main(int argc, charxx argv) {
int x = FOO; // a comment
int y = BAR;
verylong z = FOO + BAR;
return

b

J

cpp_example.c

34

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

CSE333, Winter 2026

C Preprocessor Example (3/10)

Pre-processor state

FOO 1

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

= “—P” option suppresses some extra debugging annotations

#define BAR 2 + FOO
typedef long long int verylong;
cpp_example.h
= tTme—Fo—1—]

$ cpp -P cpp_example.c out.c
S cat out.c

int main(int argc, charxx argv) {
int x = FOO; // a comment
int y = BAR;
verylong z = FOO + BAR;
return

b

J

cpp_example.c

35

W UNIVERSITY of WASHINGTON

LO5: Modules, C Preprocessor CSE333, Winter 2026

C Preprocessor Example (4/10)

Pre-processor state
FOO 1

BAR 2+1
= “—P” option suppresses some extra debugging annotations

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

o

typedef long long int verylong;

$ cpp -P cpp_example.c out.c

cpp_example.h $ cat out.c

e ftrme—F0—31—]

#Hretode—lepp—examote—ir—

int main(int argc, charxx argv) {
int x = FOO; // a comment
int y = BAR;

verylong z = FOO + BAR;
return

b

J

cpp_example.c

36

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

CSE333, Winter 2026

C Preprocessor Example (5/10)

Pre-processor state
FOO 1

BAR 2+1
= “—P” option suppresses some extra debugging annotations

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

=

typedef long long int verylong;

$ cpp -P cpp_example.c out.c

cpp_example.h $ cat out.c

D

typedef long long int verylong;
#rretode—lepp—examyte—irt—

= int main(int argc, charxx argv) {
int x = FOO; // a comment

int y = BAR;

verylong z = FOO + BAR;

return

b

J

cpp_example.c

37

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

C Preprocessor Example (6/10)

Pre-processor state

FOO 1

BAR 2+1
= “—P” option suppresses some extra debugging annotations

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

=

typedef long long int verylong;

$ cpp -P cpp_example.c out.c

cpp_example.h $ cat out.c

D

typedef long long int verylong;
HHretude—teppexempte—ivt— int main(int argc, char*x argv) {

int main(int argc, charxx argv) {
= 1int x = FOO; // a comment
int y = BAR;

verylong z = FOO + BAR;

return 0;

\ J

cpp_example.c

38

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

C Preprocessor Example (7/10)

Pre-processor state
FOO 1

BAR 2+1
= “—P” option suppresses some extra debugging annotations

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

=

typedef long long int verylong;

$ cpp -P cpp_example.c out.c

cpp_example.h $ cat out.c

D

typedef long long int verylong;
HHretude—teppexempte—ivt— int main(int argc, char*x argv) {

int x = 1;

int main(int argc, charxx argv) {
int x = FOO; =—FF—e—commernt—

=» 1int y = BAR;

verylong z = FOO + BAR;

return 0;

\ J

cpp_example.c

39

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

C Preprocessor Example (8/10)

Pre-processor state

FOO 1

BAR 2+1
= “—P” option suppresses some extra debugging annotations

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

=

typedef long long int verylong;

$ cpp -P cpp_example.c out.c

cpp_example.h $ cat out.c

D

typedef long long int verylong;
HHretude—teppexempte—ivt— int main(int argc, char*x argv) {

int x = 1;
= 2 + 1;

int main(int argc, charxx argv) {
int x = FOO; =—FF—e—commernt—
int y = BAR;

= Vverylong z = FOO + BAR;

return 0;

\ J

cpp_example.c

40

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

C Preprocessor Example (9/10)

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

Pre-processor state

CSE333, Winter 2026

FOO 1

BAR 2+1

= “—P” option suppresses some extra debugging annotations

—

typedef long long int verylong;

cpp_example.h

D

#rretode—lepp—examyte—irt—

int main(int argc, charxx argv) {
int x = FOO; =—FF—e—commernt—
int y = BAR;
verylong z = FOO + BAR;

=t return 0;

\ J

cpp_example.c

$ cpp -P cpp_example.c out.c
S cat out.c

typedef long long int verylong;
int main(int argc, char*x argv)

int x = 1;
inty = 2 + 1;
verylong z = 1 + 2 + 1;

{

41

W UNIVERSITY of WASHINGTON

LO5: Modules, C Preprocessor

C Preprocessor Example (10/10)

+» We can manually run the preprocessor:

= cpp is the preprocessor (can also use gcc -E)

Pre-processor state

CSE333, Winter 2026

FOO 1

BAR 2+1

= “—P” option suppresses some extra debugging annotations

e

typedef long long int verylong;

cpp_example.h

#rretode—lepp—examyte—irt—

int x = FOO;
int y = BAR;
verylong z =
return 0;

— A ——comretTt—

FOO + BAR;

int main(int argc, charxx argv) {

D

J

cpp_example.c

$ cpp -P cpp_example.c out.c
S cat out.c

typedef long long int verylong;
int main(int argc, char*x argv)

int x = 1;

int y =
verylong z =
return 0;

2 + 1;
1+ 2 + 1;

{

42

W UNIVERSITY of WASHINGTON

CSE333, Winter 2026

LO5: Modules, C Preprocessor

Program Using a Linked List

(#include <stdlib.h>
#include <assert.h>
#include "11l.h"

Nodex Push(Node*x head,
voidx element) {
... // implementation here

}

\.

\

(#include "11.h"

J/

ll.c

(typedef struct node_st {
void* element;
struct node_st* next;
} Node;

Node* Push(Nodex head,
void* element);

\.

int main(int argc, charxx argv) {

Nodex 1list = NULL;
charx hi = "hello";
char* bye = "goodbye";

list = Push(list, (voidx)hi);
list = Push(list, (voidx)bye);
return 0;

J

Il.h

example Il _customer.c

43

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Compiling the Program

« Four parts:
= 1/2) Compile example_11_customer.c into an object file
= 2/1) Compile L1.c into an object file
= 3) Link both object files into an executable

= 4) Test, Debug, Rinse, Repeat

$ gcc -Wall -g -o example_1l1_customer.o -c example_1l1_customer.c
$ gcc -Wall -g -o 1l.0 -c 1l.c

$ gcc —-g -0 example_11_customer 11l.0 example_11_customer.o

$./example_11_customer

Payload: 'yo!'

Payload: 'goodbye'

Payload: 'hello'

$ valgrind -leak-check=full ./example_11_customer
. etc ...

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

But There’s a Problem with #include

+» What happens when we compile foo.c?

struct Pair { [#include "pair.h")
int a, b;
}s // a useful function
, struct Pair* MakePair(int a, int b);
pair.h .)

util.h

(#include "pair.h"
#include "util.h"

int main(int argc, char*xx argv) {
// do stuff here

return 0;

\})
foo.c

45

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

A Problem with #include

+» What happens when we compile foo.c?

$ gcc -Wall -g -o foo foo.c
In file included from util.h:1,
from foo.c:2:
pair.h:1:8: error: redefinition of 'struct Pair'

1 | struct Pair { int a, b; };

| N~

In file included from foo.c:1:
pair.h:1:8: note: originally defined here

1 | struct Pair { int a, bj; };

| pair.h
+» foo.cincludes pair.h twice!
= Second time is indirectly viautil.h foo.c
= Struct definition shows up twice
util.h

- Can see using cpp

46

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

[]
. STY.LE
Preprocessor Tricks: Header Guards Iy
\[4
+ A standard C Preprocessor trick to deal with this
= Uses macro definition (#def1ne) in combination with
conditional compilation (#1 fndef and #end1)
(#ifndef PAIR_H_) (#ifndef UTIL_H_ h
#define PAIR_H_ #define UTIL_H_
struct Pair { #include "pair.h"
int a, b;
}; // a useful function
struct Pairx MakePair(int a, int b);
#tendif // PAIR_H_
#tendif // UTIL_H_
\ J \ J
pair.h util.h

foo.c

\

[#include "pair.h"
#include "util.h"

int main(int argc, char*x argv) { 47

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

[]
. . STY.LE
Preprocessor Tricks: Constants L
\I4
+~ A way to deal with “magic constants”
() (#define BUFSIZE 1000 A
#define PI 3.14159265359
int globalbuffer[1000]; int globalbuffer [BUFSIZE];
void circalc(float rad, void circalc(float rad,
float* circumf, float* circumf,
float*x area) { floatx area) {
xcircumf = rad x 2.0 % 3.1415; xcircumf = rad *x 2.0 * PI;
*area = rad * 3.1415 x 3.1415; xarea = rad x PI % PI;
\} J J 4/
Bad code Better code

(littered with magic constants)

48

W UNIVERSITY of WASHINGTON

LO5: Modules, C Preprocessor

CSE333, Winter 2026

Extra Exercise #1

+ Extend the linked list program we covered in class:
= Add a function that returns the number of elements in a list
" Implement a program that builds a list of lists
- j.e. it builds a linked list where each element is a (different) linked list
" Bonus: design and implement a “Pop” function
- Removes an element from the head of the list

- Make sure your linked list code, and customers’ code that uses it,
contains no memory leaks

49

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor CSE333, Winter 2026

Extra Exercise #2

+» Implement and test a binary search tree
" https://en.wikipedia.org/wiki/Binary search tree

- Don’t worry about making it balanced

" Implement key insert() and lookup() functions
- Bonus: implement a key delete() function

" Implement it as a C module
- bst.c,bst.h

" Implement test_bst.c

- Contains main() and tests out your BST

50

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Binary_search_tree

W UNIVERSITY of WASHINGTON LO5: Modules, C Preprocessor

Extra Exercise #3

+» Implement a Complex number module
= complex.c,complex.h
" Includes a typedef to define a complex number
- a+ bi, where aand b are doubles
= |ncludes functions to:
- add, subtract, multiply, and divide complex numbers

" |mplement a test driverin test_complex.c

« Containsmain()

CSE333, Winter 2026

51

	Slide 1: About how long did Exercise 3 take you?
	Slide 2: Systems Programming Modules, C Preprocessor
	Slide 3: Relevant Course Information
	Slide 4: Lecture Outline (1/3)
	Slide 5: Simple Linked List in C
	Slide 6: Linked List Node
	Slide 7: Push Onto List (1/14)
	Slide 8: Push Onto List (2/14)
	Slide 9: Push Onto List (3/14)
	Slide 10: Push Onto List (4/14)
	Slide 11: Push Onto List (5/14)
	Slide 12: Push Onto List (6/14)
	Slide 13: Push Onto List (7/14)
	Slide 14: Push Onto List (8/14)
	Slide 15: Push Onto List (9/14)
	Slide 16: Push Onto List (10/14)
	Slide 17: Push Onto List (11/14)
	Slide 18: Push Onto List (12/14)
	Slide 19: Push Onto List (13/14)
	Slide 20: Push Onto List (14/14)
	Slide 21: A Generic Linked List
	Slide 22: Using a Generic Linked List
	Slide 23: Resulting Memory Diagram
	Slide 24: Something’s Fishy… 🐟
	Slide 25: Lecture Outline (2/3)
	Slide 26: Multi-File C Programs
	Slide 27: C Header Files
	Slide 28: C Module Conventions (1/2)
	Slide 29: C Module Conventions (2/2)
	Slide 30: Lecture Outline (3/3)
	Slide 31: #include and the C Preprocessor
	Slide 32: Exploration: Which of the following text will remain in the preprocessor output?
	Slide 33: C Preprocessor Example (1/10)
	Slide 34: C Preprocessor Example (2/10)
	Slide 35: C Preprocessor Example (3/10)
	Slide 36: C Preprocessor Example (4/10)
	Slide 37: C Preprocessor Example (5/10)
	Slide 38: C Preprocessor Example (6/10)
	Slide 39: C Preprocessor Example (7/10)
	Slide 40: C Preprocessor Example (8/10)
	Slide 41: C Preprocessor Example (9/10)
	Slide 42: C Preprocessor Example (10/10)
	Slide 43: Program Using a Linked List
	Slide 44: Compiling the Program
	Slide 45: But There’s a Problem with #include
	Slide 46: A Problem with #include
	Slide 47: Preprocessor Tricks: Header Guards
	Slide 48: Preprocessor Tricks: Constants
	Slide 49: Extra Exercise #1
	Slide 50: Extra Exercise #2
	Slide 51: Extra Exercise #3

