
CSE 333, Winter 2026L04: Heap, Structs

1

About how long did Exercise 2 take you?

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours

F. I didn’t submit / I prefer not to say

pollev.com/cse333j

CSE 333, Winter 2026L04: Heap, Structs

Systems Programming
Heap, Structs
Systems Programming
Heap, Structs

Instructors:

Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE 333, Winter 2026L04: Heap, Structs

Relevant Course Information (1/2)

❖ Exercise grades

▪ We will occasionally give “Autograder Adjustment” points

▪ Regrade requests: open 24 hr after, close 72 hr after release

❖ Leniency on Exercise 2 submissions

▪ git: add/commit/push, tag with ex2-submit, then push tag

▪ You should get an email if submission issue, have until 11:59 PM

tonight to correct TAG (can’t tag a commit after deadline)

❖ HW1 due next Thursday, 1/22 @ 11:59 PM

▪ You may not modify interfaces (.h files), but do read the

interfaces while you’re implementing them (!)

▪ Suggestion: pace yourself and make steady progress

▪ Partner declarations due this Thursday, 1/15 @ 11:59 PM
3

https://forms.gle/7YQCarAJF63vPHTAA
https://forms.gle/7YQCarAJF63vPHTAA

CSE 333, Winter 2026L04: Heap, Structs

Relevant Course Information (2/2)

❖ Gitlab repo usage

▪ Commit things regularly (not all at once at the end)

• Newly completed units of work / milestones / project parts

• Don’t push .o and executable files or other build products

▪ Provides backups – can retrieve old versions of files ☺

▪ Useful for sharing with staff members and partner

4

CSE 333, Winter 2026L04: Heap, Structs

Lecture Outline (1/2)

❖ Heap-allocated Memory

▪ malloc() and free()

▪ Memory leaks

❖ structs and typedef

5

CSE 333, Winter 2026L04: Heap, Structs

Why Dynamic Allocation?

❖ Situations where static and automatic allocation aren’t

sufficient:

▪ We need memory that persists across multiple function calls but

not for the whole lifetime of the program

▪ We need more memory than can fit on the Stack

▪ We need memory whose size is not known in advance

• e.g., reading file input:

6

// this is pseudo-C code
char* ReadFile(char* filename) {
 int size = GetFileSize(filename);
 char* buffer = AllocateMem(size);

 ReadFileIntoBuffer(filename, buffer);
 return buffer;
}

CSE 333, Winter 2026L04: Heap, Structs

Dynamic Allocation

❖ What we want is dynamically-allocated memory

▪ Your program explicitly requests a new block of memory

• The language allocates it at runtime, perhaps with help from OS

▪ Dynamically-allocated memory persists until either:

• Your code deallocates it (manual/explicit memory management)

• A garbage collector collects it (automatic/implicit memory

management)

❖ C requires you to manually manage memory

▪ Gives you more control, but causes headaches

7

CSE 333, Winter 2026L04: Heap, Structs

The Heap (351 Review)

❖ The Heap is a large pool of

available memory used to hold

dynamically-allocated data

▪ malloc allocates chunks of data in

the Heap; free deallocates those

chunks

▪ malloc maintains bookkeeping data

in the Heap to track allocated blocks

• Lab 5 from 351!

8

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

CSE 333, Winter 2026L04: Heap, Structs

Aside: NULL

❖ NULL is a memory location that is guaranteed to be

invalid

▪ In C on Linux, NULL is 0x0 and an attempt to dereference NULL

causes a segmentation fault

❖ Useful as an indicator of an uninitialized (or currently

unused) pointer or allocation error

▪ It’s better to cause a segfault than to allow the corruption of

memory!

9

int main(int argc, char** argv) {
 int* p = NULL;
 *p = 1; // causes a segmentation fault
 return EXIT_SUCCESS;
}

segfault.c

CSE 333, Winter 2026L04: Heap, Structs

malloc()

❖ General usage:

❖ malloc allocates an uninitialized block of heap memory

of at least the requested size

▪ Returns a pointer to the first byte of that memory; returns NULL

if the memory allocation failed!

▪ Stylistically, you’ll want to (1) use sizeof in your argument,

(2) cast the return value, and (3) error check the return value

❖ Also, see calloc() and realloc()
10

var = (type*) malloc(size in bytes)

// allocate a 10-float array
float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL) {
 return errcode;
}
... // do stuff with arr

STYLE
TIP

CSE 333, Winter 2026L04: Heap, Structs

free()

❖ Usage: free(pointer);

❖ Deallocates the memory pointed-to by the pointer

▪ Pointer must point to the first byte of heap-allocated memory

(i.e., something previously returned by malloc or calloc)

▪ Freed memory becomes eligible for future allocation

▪ Freeing NULL has no effect

▪ The bits stored in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

11

free(pointer);

float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL)
 return errcode;
... // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (1/11)

12

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
nums_copy

nums

Note: Arrow points
to next instruction.

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (2/11)

13

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
nums_copy

nums 1 2 3 4

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (3/11)

14

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
nums_copy

copy
a size 4

nums 1 2 3 4

i a2

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (4/11)

15

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

malloc

main
nums_copy

copy
a size 4

nums 1 2 3 4

i a2

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (5/11)

16

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
nums_copy

copy
a size 4

nums 1 2 3 4

i a2

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (6/11)

17

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
nums_copy

copy
a size 4

nums 1 2 3 4

i 0 a2

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (7/11)

18

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
nums_copy

copy
a size 4

nums 1 2 3 4

i 4 a2

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (8/11)

19

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
nums_copy

nums 1 2 3 4

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (9/11)

20

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

1 2 3 4

main
nums_copy

nums 1 2 3 4

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (10/11)

21

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
nums_copy

nums 1 2 3 4

free

CSE 333, Winter 2026L04: Heap, Structs

Heap and Stack Example (11/11)

22

#include <stdlib.h>

int* Copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size * sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* nums_copy = Copy(nums, 4);
 // .. do stuff with the array ..
 free(nums_copy);
 return EXIT_SUCCESS;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment
(main, copy)

main
nums_copy

nums 1 2 3 4

CSE 333, Winter 2026L04: Heap, Structs

What is your anticipated lecture/section
attendance modality?

A. Line 1

B. Line 4

C. Line 6

D. Line 7

E. We’re lost…

23

Which line will first result in undefined behavior
or a guaranteed error?

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 int a[2];
 int* b = malloc(2*sizeof(int));
 int* c;

 a[2] = 5;
 b[0] += 2;
 c = b+3;
 free(&(a[0]));
 free(b);
 free(b);
 b[0] = 5;

 return EXIT_SUCCESS;
}

1
2
3
4
5
6
7

memcorrupt.c

pollev.com/cse333j

CSE 333, Winter 2026L04: Heap, Structs

Memory Leaks

❖ A memory leak occurs when code fails to deallocate

dynamically-allocated memory that is no longer used

▪ e.g., forget to free malloc-ed block, lose/change pointer to

malloc-ed block

▪ Easier said than done; just passing pointers around – who’s

responsible for freeing?

❖ What happens: process’ virtual memory footprint will

keep growing

▪ This might be OK for short-lived program, since all memory is

deallocated when program ends

▪ Usually has bad memory and performance repercussions for long-

lived programs
24

CSE 333, Winter 2026L04: Heap, Structs

Lecture Outline (2/2)

❖ Heap-allocated Memory

▪ malloc() and free()

▪ Memory leaks

❖ structs and typedef

25

CSE 333, Winter 2026L04: Heap, Structs

Structured Data (351 Review)

❖ A struct is a C datatype that contains a set of fields

▪ Similar to a Java class, but with no methods or constructors

▪ Useful for defining new structured types of data

▪ Behave similarly to primitive variables

❖ Generic declaration:

26

struct tagname {
 type1 name1;
 ...
 typeN nameN;
};

// the following defines a new
// structured datatype called
// a "struct Point"
struct Point {
 float x, y;
};

// declare and initialize a
// struct Point variable
struct Point origin = {0.0,0.0};

CSE 333, Winter 2026L04: Heap, Structs

Using Structs (351 Review)

❖ Use “.” to refer to a field in a struct

❖ Use “->” to refer to a field from a struct pointer

▪ Dereferences pointer first, then accesses field

27

struct Point {
 float x, y;
};

int main(int argc, char** argv) {
 struct Point p1 = {0.0, 0.0}; // p1 is stack allocated
 struct Point* p1_ptr = &p1;

 p1.x = 1.0;
 p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;
 return EXIT_SUCCESS;
}

simplestruct.c

CSE 333, Winter 2026L04: Heap, Structs

Copy by Assignment

❖ You can assign the value of a struct from a struct of the

same type – this copies the entire contents!

28

struct Point {
 float x, y;
};

int main(int argc, char** argv) {
 struct Point p1 = {0.0, 2.0};
 struct Point p2 = {4.0, 6.0};

 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
 p2 = p1;
 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
 return EXIT_SUCCESS;
}

structassign.c

CSE 333, Winter 2026L04: Heap, Structs

Typedef (351 Review)

❖ Generic format: typedef type name;

❖ Allows you to define new data type names/synonyms

▪ Both type and name are usable and refer to the same type

▪ Be careful with pointers – * before name is part of type!

29

typedef type name;

// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“
// make "PointPtr" a synonym for "struct point_st*"
typedef struct point_st {
 superlong x;
 superlong y;
} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

CSE 333, Winter 2026L04: Heap, Structs

Check-In Activity

❖ Write out a C snippet that:

▪ Defines a struct for a linked list node that holds (1) a character

pointer and (2) a pointer to an instance of this struct

▪ Typedefs the struct as Node

30

CSE 333, Winter 2026L04: Heap, Structs

Dynamically-allocated Structs

❖ You can malloc and free structs, just like other data

type

▪ sizeof is particularly helpful here

31

// a complex number is a + bi
typedef struct complex_st {
 double real; // real component
 double imag; // imaginary component
} Complex;

Complex* AllocComplex(double real, double imag) {
 Complex* retval = (Complex*) malloc(sizeof(Complex));
 if (retval != NULL) {
 retval->real = real;
 retval->imag = imag;
 }
 return retval;
}

complexstruct.c

CSE 333, Winter 2026L04: Heap, Structs

Structs as Arguments

❖ Structs are passed by value, like everything else in C

▪ Entire struct is copied – where?

▪ To manipulate a struct argument, pass a pointer instead

32

typedef struct point_st {
 int x, y;
} Point;

void DoubleXBroken(Point p) { p.x *= 2; }

void DoubleXWorks(Point* p) { p->x *= 2; }

int main(int argc, char** argv) {
 Point a = {1,1};
 DoubleXBroken(a);
 printf("(%d,%d)\n", a.x, a.y); // prints: (,)
 DoubleXWorks(&a);
 printf("(%d,%d)\n", a.x, a.y); // prints: (,)
 return EXIT_SUCCESS;
}

structarg.c

CSE 333, Winter 2026L04: Heap, Structs

Returning Structs

❖ Exact method of return depends on calling conventions

▪ Often in %rax and %rdx for small structs

▪ Often returned in memory for larger structs

33

// a complex number is a + bi
typedef struct complex_st {
 double real; // real component
 double imag; // imaginary component
} Complex;

Complex MultiplyComplex(Complex x, Complex y) {
 Complex retval;

 retval.real = (x.real * y.real) - (x.imag * y.imag);
 retval.imag = (x.imag * y.real) - (x.real * y.imag);
 return retval; // returns a copy of retval
}

complexstruct.c

CSE 333, Winter 2026L04: Heap, Structs

Pass Copy of Struct or Pointer?

❖ Value passed: Passing a pointer is cheaper and takes less

space unless struct is small

❖ Field access: Indirect accesses through pointers are a bit

more expensive and can be harder for compiler to

optimize

❖ For small stucts (like struct complex_st), passing a

copy of the struct can be faster and often preferred if

function only reads data; for large structs use pointers

34

STYLE
TIP

CSE 333, Winter 2026L04: Heap, Structs

What is your anticipated lecture/section
attendance modality?

35

Which function prototype should be used?
▪ Pop takes the head of a linked list of Node, then

removes and returns the first node:

 ________ Pop(________ head);

▪ Should the return type be (1) Node or (2) Node*?

▪ Should the parameter be (1) Node, (2) Node*,
or (3) Node**?

pollev.com/cse333j

CSE 333, Winter 2026L04: Heap, Structs

Extra Exercise #1

❖ Write a program that defines:

▪ A new structured type Point

• Represent it with floats for the x and y coordinates

▪ A new structured type Rectangle

• Assume its sides are parallel to the x-axis and y-axis

• Represent it with the bottom-left and top-right Points

▪ A function that computes and returns the area of a Rectangle

▪ A function that tests whether a Point is inside of a Rectangle

36

CSE 333, Winter 2026L04: Heap, Structs

Extra Exercise #2

❖ Implement AllocSet() and FreeSet()

▪ AllocSet() needs to use malloc twice: once to allocate a new

ComplexSet and once to allocate the “points” field inside it

▪ FreeSet() needs to use free twice

37

typedef struct complex_st {
 double real; // real component
 double imag; // imaginary component
} Complex;

typedef struct complex_set_st {
 double num_points_in_set;
 Complex* points; // an array of Complex
} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);
void FreeSet(ComplexSet* set);

	Slide 1: About how long did Exercise 2 take you?
	Slide 2: Systems Programming Heap, Structs
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: Lecture Outline (1/2)
	Slide 6: Why Dynamic Allocation?
	Slide 7: Dynamic Allocation
	Slide 8: The Heap (351 Review)
	Slide 9: Aside: NULL
	Slide 10: malloc()
	Slide 11: free()
	Slide 12: Heap and Stack Example (1/11)
	Slide 13: Heap and Stack Example (2/11)
	Slide 14: Heap and Stack Example (3/11)
	Slide 15: Heap and Stack Example (4/11)
	Slide 16: Heap and Stack Example (5/11)
	Slide 17: Heap and Stack Example (6/11)
	Slide 18: Heap and Stack Example (7/11)
	Slide 19: Heap and Stack Example (8/11)
	Slide 20: Heap and Stack Example (9/11)
	Slide 21: Heap and Stack Example (10/11)
	Slide 22: Heap and Stack Example (11/11)
	Slide 23: What is your anticipated lecture/section attendance modality?
	Slide 24: Memory Leaks
	Slide 25: Lecture Outline (2/2)
	Slide 26: Structured Data (351 Review)
	Slide 27: Using Structs (351 Review)
	Slide 28: Copy by Assignment
	Slide 29: Typedef (351 Review)
	Slide 30: Check-In Activity
	Slide 31: Dynamically-allocated Structs
	Slide 32: Structs as Arguments
	Slide 33: Returning Structs
	Slide 34: Pass Copy of Struct or Pointer?
	Slide 35: What is your anticipated lecture/section attendance modality?
	Slide 36: Extra Exercise #1
	Slide 37: Extra Exercise #2

