WA UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333j

About how long did Exercise 2 take you?

nmoo®p

[2, 4) hours

[4, 6) hours

[6, 8) hours

8+ Hours

| didn’t submit / | prefer not to say

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Systems Programming
Heap, Structs

Instructors:

Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson
Grace Zhou Jackson Kent Janani Raghavan
Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Relevant Course Information (1/2)

- Exercise grades

= We will occasionally give “Autograder Adjustment” points

= Regrade requests: open 24 hr after, close 72 hr after release

- Leniency on Exercise 2 submissions
= gjt: add/commit/push, tag with ex2-submit, then push tag

" You should get an email if submission issue, have until 11:59 PM
tonight to correct TAG (can’t tag a commit after deadline)

» HW1 due next Thursday, 1/22 @ 11:59 PM

" You may not modify interfaces (. h files), but do read the
interfaces while you’re implementing them (!)

= Suggestion: pace yourself and make steady progress
= Partner declarations due this Thursday, 1/15 @ 11:59 PM

https://forms.gle/7YQCarAJF63vPHTAA
https://forms.gle/7YQCarAJF63vPHTAA

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Relevant Course Information (2/2)

+ Gitlab repo usage
"= Commit things regularly (not all at once at the end)

- Newly completed units of work / milestones / project parts

- Don’t push .0 and executable files or other build products
" Provides backups — can retrieve old versions of files ©

= Useful for sharing with staff members and partner

WA UNIVERSITY of WASHINGTON

LO4: Heap, Structs

Lecture Outline (1/2)

+» Heap-allocated Memory
" malloc() and free()

" Memory leaks

+ Structsand typedef

CSE 333, Winter 2026

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Why Dynamic Allocation?

« Situations where static and automatic allocation aren’t
sufficient:

= We need memory that persists across multiple function calls but
not for the whole lifetime of the program

" We need more memory than can fit on the Stack

"= We need memory whose size is not known in advance

- e.g., reading file input:

(// this 1s pseudo-C code

charx ReadFile(charx filename) {
int size = GetFileSize(filename);
char*x buffer = AllocateMem(size);

ReadFileIntoBuffer (filename, buffer);
return buffer;

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Dynamic Allocation

+» What we want is dynamically-allocated memory
" Your program explicitly requests a new block of memory
- The language allocates it at runtime, perhaps with help from OS

= Dynamically-allocated memory persists until either:

- Your code deallocates it (manual/explicit memory management)

- A garbage collector collects it (automatic/implicit memory
management)

+» Crequires you to manually manage memory

= Gives you more control, but causes headaches

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

The Heap (351 Review)

+» The Heap is a large pool of

available memory used to hold B
dynamically-allocated data |
= malloc allocates chunks of data in 1
the Heap; free deallocates those Shared Libraries
chunks
= malloc maintains bookkeeping data 1

Heap (malloc/free)

Read/Write S t
- Lab 5 from 351! = /.dartla?.bigmen

in the Heap to track allocated blocks

Read-Only Segment
.text, .rodata

0x00...00

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Aside: NULL

2 is @ memory location that is guaranteed to be
invalid

" |n Con Linux, is and an attempt to dereference
causes a segmentation fault

+ Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error

" |t's better to cause a segfault than to allow the corruption of
memory!

[int main(int argc, char** argv) {

intx p = NULL;

xp = 13 // causes a segmentation fault
return EXIT_SUCCESS;

segfault.c

|}

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

malloc()

+ General usage: [var = (typex) malloc(sizein bytes)

J

+ malloc allocates an uninitialized block of heap memory
of at least the requested size

= Returns a pointer to the first byte of that memory; returns NULL
if the memory allocation failed!

= Stylistically, you’ll want to (1) use sizeof in your argument,
(2) cast the return value, and (3) error check the return value

N\

r// allocate a 10-float array
float*x arr = (float*) malloc(l0*xsizeof(float));
if (arr == NULL) {

return errcode;

}
// do stuff with arr

. S

« Also, see calloc() and realloc()

10

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

free()

’ Usage;[free(pointer);]

+ Deallocates the memory pointed-to by the pointer

CSE 333, Winter 2026

" Pointer must point to the first byte of heap-allocated memory
(i.e., something previously returned by malloc or calloc)

" Freed memory becomes eligible for future allocation

" Freeing

has no effect

"= The bits stored in the pointer are not changed by calling free

- Defensive programming: can set pointer to

after freeing it

7

\

float*x arr = (float*) malloc(l0*xsizeof(float));
if (arr == NULL)
return errcode;
e // do stuff with arr
free(arr);

arr = NULL; // OPTIONAL

< 11

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

Heap and Stack Example (1/11)

arraycopy.c

7 nelude dsralllh. s

intx Copy(int a[], int size) {
int i, *a2;

a2 = malloc(size * sizeof(int));
if (a2 == NULL)
return NULL;
for (i = 0; i < size; i++)
a2[i] = a[i];
return a2;

}

int main(int argc, char*xx argv) {

m—— int nums[4] = {1, 2, 3, 4};

int* nums_copy = Copy(nums, 4);
// .. do stuff with the array ..
free(nums_copy) ;

return EXIT_SUCCESS;

\

CSE 333, Winter 2026

Note: Arrow points
to next instruction.

Stack

main

nums

nums_copy

|

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

12

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

CSE 333, Winter 2026

Heap and Stack Example (2/11)

arraycopy.c

7 nelude dsralllh. s

intx Copy(int a[], int size) {
int i, *a2;

a2 = malloc(size * sizeof(int));
if (a2 == NULL)
return NULL;

for (i = 0; i < size; i++)
a2[i] = al[il;

return a2;

}

int main(int argc, char*xx argv) {
int nums[4] = {1, 2, 3, 4};

=t intx nums_copy = Copy(nums, 4);

// .. do stuff with the array ..
free(nums_copy) ;

return EXIT_SUCCESS;

\J J

\

Stack

nums| 1| 2| 3 | 4

main

nums_copy

|

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

13

W UNIVERSITY of WASHINGTON LO4: Heap, Structs

CSE 333, Winter 2026

Heap and Stack Example (3/11)

arraycopy.c

7 nelude dsralllh. s

intx Copy(int a[], int size) {
int i, *a2;

m——p a2 = malloc(size * sizeof(int));
if (a2 == NULL)
return NULL;

for (i = 0; i < size; i++)
a2[i] = al[il;

return a2;

}

int main(int argc, char*xx argv) {
int nums[4] = {1, 2, 3, 4};
int* nums_copy = Copy(nums, 4);
// .. do stuff with the array ..
free(nums_copy) ;
return EXIT_SUCCESS;

\

Stack
_ numsl 11234
main
nums_copy
_é sizel| 4
copy :
1 a2

1

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

14

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

CSE 333, Winter 2026

Heap and Stack Example (4/11)

arraycopy.c

7 nelude dsralllh. s

intx Copy(int a[], int size) {
int i, *a2;

m——p a2 = malloc(size * sizeof(int));

1t (a2 == NULL)
return NULL;

for (i = 0; i < size; i++)
a2[i] = al[il;

return a2;

}
int nums[4] = {1, 2, 3, 4};

free(nums_copy) ;
return EXIT_SUCCESS;

int main(int argc, char*xx argv) {

int* nums_copy = Copy(nums, 4);
// .. do stuff with the array ..

\

Stack
_ numsl 11234

main

nums_copy

_é sizel| 4
copy :

1 a2
malloc

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

15

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

CSE 333, Winter 2026

Heap and Stack Example (5/11)

arraycopy.c

7 nelude dsralllh. s

intx Copy(int a[], int size) {
int i, *a2;

return NULL;

for (i = 0; i < size; i++)
a2[i] = al[il;

return a2;

}
int nums[4] = {1, 2, 3, 4};

free(nums_copy) ;
return EXIT_SUCCESS;

a2 = malloc(size * sizeof(int));
— if (a2 == NULL)

int main(int argc, char*xx argv) {

int* nums_copy = Copy(nums, 4);
// .. do stuff with the array ..

\

Stack
_ numsl 11234
main
nums_copy
_é sizel| 4
copy :
1 a2

—

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

16

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

CSE 333, Winter 2026

Heap and Stack Example (6/11)

arraycopy.c

(“#include <stdlib.h>
intx Copy(int a[], int size) {

int i, *a2;

1t (a2 == NULL)
return NULL;

— for (i = 0; i < size; i++)

a2[i] = a[i];

return a2;

}
int nums[4] = {1, 2, 3, 4};

free(nums_copy) ;
return EXIT_SUCCESS;

a2 = malloc(size * sizeof(int));

int main(int argc, char*xx argv) {

int* nums_copy = Copy(nums, 4);
// .. do stuff with the array ..

\

Stack
_ numsl 11234
main
nums_copy
_é sizel| 4
copy :
110 a2

—

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

17

W univ

ERSITY of WASHINGTON LO4: Heap, Structs

CSE 333, Winter 2026

Heap and Stack Example (7/11)

arraycopy.c

q

7 nelude dsralllh. s

intx Copy(int a[], int size) {
int i, *a2;

a2 = malloc(size * sizeof(int));

if (a2 == NULL)
return NULL;

for (i = 0; i < size; i++)
a2[i] = al[il;

return a2;

}

int main(int argc, char*xx argv) {

int nums[4] = {1, 2, 3, 4};
int* nums_copy = Copy(nums, 4);

// .. do stuff with the array ..

free(nums_copy) ;
return EXIT_SUCCESS;

\

Stack

numsl 1123

main

nums_copy

a size

copy

il 4 a2

—

1

112 |3(4
Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

18

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

Heap and Stack Example (8/11)

arraycopy.c

q

7 nelude dsralllh. s

intx Copy(int a[], int size) {
int i, *a2;

a2 = malloc(size * sizeof(int));

if (a2 == NULL)
return NULL;

for (i = 0; i < size; i++)
a2[i] = al[il;

return a2;

}

int main(int argc, char*xx argv) {

int nums[4] = {1, 2, 3, 4};
int* nums_copy = Copy(nums, 4);

// .. do stuff with the array ..

free(nums_copy) ;
return EXIT_SUCCESS;

\J

\

CSE 333, Winter 2026

Stack
nums| 1 [2| 3| 4
main
nums_copy J
I
V
1| 2[3]4
Heap (malloc/free)
Read/Write Segment

Read-Only Segment

(main, copy)

19

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

Heap and Stack Example (9/11)

arraycopy.c

(“#include <stdlib.h>
intx Copy(int a[], int size) {
int i, *a2;
if (a2 == NULL)
return NULL;

for (i = 0; i < size; i++)
a2[i] = al[il;

return a2;

}

int nums[4] = {1, 2, 3, 4};

return EXIT_SUCCESS;

a2 = malloc(size * sizeof(int));

int main(int argc, char*xx argv) {

int* nums_copy = Copy(nums, 4);
// .. do stuff with the array ..
= free(nums_copy) ;

\

CSE 333, Winter 2026

Stack
nums| 1 [2| 3| 4
main
nums_copy J
I
V
1| 2[3]4
Heap (malloc/free)
Read/Write Segment

Read-Only Segment

(main, copy)

20

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

CSE 333, Winter 2026

Heap and Stack Example (10/11)

arraycopy.c

}

7 nelude dsralllh. s

intx Copy(int a[], int size) {

int i, *a2;

a2 = malloc(size * sizeof(int));
if (a2 == NULL)

return NULL;
for (i = 0; i < size; i++)

a2[] = alil;

return a2;

int main(int argc, char*xx argv) {

int nums[4] = {1, 2, 3, 4};

int* nums_copy = Copy(nums, 4);
// .. do stuff with the array ..
free(nums_copy) ;

return EXIT_SUCCESS;

\

Stack
_ nums| 1 [2| 3| 4
main
nums_copy J
free

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

21

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

CSE 333, Winter 2026

Heap and Stack Example (11/11)

arraycopy.c

7 nelude dsralllh. s

intx Copy(int a[], int size) {
int i, *a2;

a2 = malloc(size * sizeof(int));
if (a2 == NULL)
return NULL;

for (i = 0; i < size; i++)
a2[i] = al[il;

return a2;

}

int main(int argc, char*xx argv) {
int nums[4] = {1, 2, 3, 4};
int* nums_copy = Copy(nums, 4);
// .. do stuff with the array ..
free(nums_copy) ;

—(return EXIT_SUCCESS;
}

\

Stack

nums| 1| 2 | 3

main

nums_copy J

\j

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

(main, copy)

22

WA UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333j

Which line will first result in undefined behavior

or a guaranteed error? memcorrupt.c

(ﬁinclude <stdio.h>)
#include <stdlib.h>

. int main(int argc, char*x argv) {
Line 4 int a[2];

. int*x b = malloc(2*sizeof(int));
Llne 6 -int* C;

Line 7

We’re lost...

al[2] = 5;

b[o] += 2;

c = b+3;
free(&(al0]));
free(b);
free(b);

b[O0] = 5;

m O O W >

~Noun b WNER

return EXIT_SUCCESS;

23

W UNIVERSITY of WASHINGTON

LO4: Heap, Structs

Memory Leaks

+ A memory leak occurs when code fails to deallocate
dynamically-allocated memory that is no longer used

= e.g., forget to free malloc-ed block, lose/change pointer to
malloc-ed block

= Easier said than done; just passing pointers around — who's
responsible for freeing?

+» What happens: process’ virtual memory footprint will
keep growing

" This might be OK for short-lived program, since all memory is
deallocated when program ends

= Usually has bad memory and performance repercussions for long-
lived programs

CSE 333, Winter 2026

24

WA UNIVERSITY of WASHINGTON

LO4: Heap, Structs

Lecture Outline (2/2)

- Heap-allocated Memory
" malloc() and free ()

" Memory leaks

+ structsand typedef

CSE 333, Winter 2026

25

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter

Structured Data (351 Review)

+ A structisa Cdatatype that contains a set of fields

= Similar to a Java class, but with no methods or constructors

= Useful for defining new structured types of data

= Behave similarly to primitive variables

« Generic declaration:

4)
struct tagname {
typel namel;

typeN nameN;

\}; J

\.

r

// the following defines a new
// Structured datatype called
// a "struct Point"
struct Point {

float x, y;

s

// declare and initialize a
// struct Point variable
struct Point origin = {O.@,@.@};)

2026

26

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Using Structs (351 Review)

« Use “.” torefer to a field in a struct

+» Use “—>" to refer to a field from a struct pointer

= Dereferences pointer first, then accesses field

(struct Point {
float x, y;

s

int main(int argc, char*xx argv) {
struct Point pl = {0.0, 0.0}; // pl i1s stack allocated
struct Point*x pl_ptr = &pl;

plex = 1.0;
pl_ptr->y = 2.0; // equivalent to (*pl_ptr).y = 2.0;
return EXIT_SUCCESS;
J y
simplestruct.c

27

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Copy by Assignment

+ You can assign the value of a struct from a struct of the
same type — this copies the entire contents!

(struct Point { h
float x, vy;
s
int main(int argc, char*x argv) {
struct Point pl = {0.0, 2.0};
struct Point p2 = {4.0, 6.0};
printf("pl: {%f,%f} p2: {%f,%f}\n", pl.x, pl.y, p2.x, p2.y);
P2_: pl;
printf("pl: {%f,%f} p2: {%f,%f}\n", pl.x, pl.y, p2.x, p2.y);
return EXIT_SUCCESS;
\} y,

structassign.c

28

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Typedef (351 Review)

+ Generic format:[typedef type name;]

+ Allows you to define new data type names/synonyms

= Both type and name are usable and refer to the same type

= Be careful with pointers — x before name is part of type!

r// make '"superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str'" a synonym for "charx"
typedef char *xstr;

// make "Point" a synonym for '"struct point_st { ... }“
// make "PointPtr'" a synonym for '"struct point_st*"
typedef struct point_st {

superlong Xx;

superlong vy;
} Point, *PointPtr; // similar syntax to "int n, *p;"

\Point origin = {0, 0};

29

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Check-In Activity

+» Write out a C snippet that:

= Defines a struct for a linked list node that holds (1) a character
pointer and (2) a pointer to an instance of this struct

" Typedefs the struct as Node

30

W UNIVERSITY of WASHINGTON LO4: Heap, Structs

Dynamically-allocated Structs

CSE 333, Winter 2026

+» Youcanmalloc and free structs, just like other data

type

= sijzeof is particularly helpful here

(// a complex number 1s a + bt
typedef struct complex_st {
double real; // real component
double imag; // imaginary component
} Complex;

Complex* AllocComplex(double real, double 1imag) {

it (retval != NULL) {
retval->real = real;
retval->imag = imag;
¥

return retval;

|

Complex* retval = (Complex*) malloc(sizeof(Complex));

complexstruct.c

31

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Structs as Arguments

+ Structs are passed by value, like everything else in C
" Entire struct is copied — where?

" To manipulate a struct argument, pass a pointer instead

ftypedef struct point_st { structarg,a
int x, Vy;
} Point;

void DoubleXBroken(Point p) { p.x *x= 23 }
void DoubleXWorks(Pointx p) { p->x *= 2; }

int main(int argc, char*x argv) {
Point a = {1,1};
DoubleXBroken(a) ;
printf (" (%d,%d)\n", a.x, a.y); // prints: (,)
DoubleXWorks (&a) ;
printf (" (%d,%d)\n", a.x, a.y); // prints: (,)
return EXIT_SUCCESS;

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Returning Structs

+ Exact method of return depends on calling conventions
= Often in %rax and %rdx for small structs

= Often returned in memory for larger structs

(// a complex number i1s a + b1t h
typedef struct complex_st {
double real; // real component
double 1imag; // i1maginary component
} Complex;
Complex MultiplyComplex(Complex x, Complex y) {
Complex retval;
retval.real = (x.real * y.real) - (x.imag * y.imag);
retval.imag = (x.imag * y.real) - (x.real * y.imag);
return retval; // returns a copy of retval
\} y,

complexstruct.c

33

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Pass Copy of Struct or Pointer? S%E

+» Value passed: Passing a pointer is cheaper and takes less
space unless struct is small

» Field access: Indirect accesses through pointers are a bit
more expensive and can be harder for compiler to

optimize

» For small stucts (like struct complex_st), passing a
copy of the struct can be faster and often preferred if
function only reads data; for large structs use pointers

34

WA UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

0 PO" Evel‘yWhel‘e pollev.com/cse333;j b

Which function prototype should be used?

= Pop takes the head of a linked list of Node, then
removes and returns the first node:

Pop (head) ;

= Should the return type be (1) Node or (2) Nodex*?

= Should the parameter be (1) Node, (2) Nodex,
or (3) Nodex*?

35

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Extra Exercise #1

+ Write a program that defines:
" A new structured type Point
- Represent it with floats for the x and y coordinates

= A new structured type Rectangle
- Assume its sides are parallel to the x-axis and y-axis

- Represent it with the bottom-left and top-right Points
= A function that computes and returns the area of a Rectangle

= A function that tests whether a Point is inside of a Rectangle

36

W UNIVERSITY of WASHINGTON LO4: Heap, Structs CSE 333, Winter 2026

Extra Exercise #2

+ Implement AllocSet () and FreeSet ()

= AllocSet() needs to use malloc twice: once to allocate a new
ComplexSet and once to allocate the “points” field inside it

= FreeSet() needs to use free twice

(typedef struct complex_st {

double real; // real component
double 1imag; // imaginary component
} Complex;

typedef struct complex_set_st {

double num_points_in_set;

Complex* points; // an array of Complex
} ComplexSet;

ComplexSetx AllocSet(Complex c_arr[], int size);
kvo1'd FreeSet (ComplexSet* set);

37

	Slide 1: About how long did Exercise 2 take you?
	Slide 2: Systems Programming Heap, Structs
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: Lecture Outline (1/2)
	Slide 6: Why Dynamic Allocation?
	Slide 7: Dynamic Allocation
	Slide 8: The Heap (351 Review)
	Slide 9: Aside: NULL
	Slide 10: malloc()
	Slide 11: free()
	Slide 12: Heap and Stack Example (1/11)
	Slide 13: Heap and Stack Example (2/11)
	Slide 14: Heap and Stack Example (3/11)
	Slide 15: Heap and Stack Example (4/11)
	Slide 16: Heap and Stack Example (5/11)
	Slide 17: Heap and Stack Example (6/11)
	Slide 18: Heap and Stack Example (7/11)
	Slide 19: Heap and Stack Example (8/11)
	Slide 20: Heap and Stack Example (9/11)
	Slide 21: Heap and Stack Example (10/11)
	Slide 22: Heap and Stack Example (11/11)
	Slide 23: What is your anticipated lecture/section attendance modality?
	Slide 24: Memory Leaks
	Slide 25: Lecture Outline (2/2)
	Slide 26: Structured Data (351 Review)
	Slide 27: Using Structs (351 Review)
	Slide 28: Copy by Assignment
	Slide 29: Typedef (351 Review)
	Slide 30: Check-In Activity
	Slide 31: Dynamically-allocated Structs
	Slide 32: Structs as Arguments
	Slide 33: Returning Structs
	Slide 34: Pass Copy of Struct or Pointer?
	Slide 35: What is your anticipated lecture/section attendance modality?
	Slide 36: Extra Exercise #1
	Slide 37: Extra Exercise #2

