WA UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333j

About how long did Exercises 0 and 1 take
you? (two polls)

A.

B. [2,4)hours

C. [4,6) hours

D. [6, 8) hours

E. 8+ Hours

F. Ididn’t submit /| prefer not to say

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO3: Pointers

Systems Programming

Pointers

Instructors:
Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister
Violet Monserate

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Relevant Course Information (1/3)

+ Exercise grading (see Ed post #53)

= Autograder scores visible immediately after deadline; sample
solutions released same day as deadline

" Grades (out of 8):
 Correctness: Output (3)
- Tools: Compilation (1), Valgrind (1)
- Style: Linter (1), Other Style [manual] (2)

= Style things to watch for:

- FOLLOW THE SPEC (especially the Style Guide section)
« Check the Google C++ Style Guide
- Make a judgment call and document

= Keep style tips in mind, as you will need to use them in HW

https://edstem.org/us/courses/89933/discussion/7492744

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Relevant Course Information (2/3)

» Pre-quarter survey (Canvas quiz) due tonight

» Exercise 2 out today and due Monday (1/12) morning
= First exercise submitted via Gitlab tagging (ex2-submit)
" Make a private Ed post if you don’t have your exercise repo yet

» Homework 1 out tonight, due in 2 weeks (Thu 1/22)
" Linked list and hash table implementationsin C

= Get starter code by cloning your new homework repo

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Relevant Course Information (3/3)

» Documentation:
" man pages, books

= Reference websites: cplusplus.org, man7.org,
gcc.gnu.org, etc.

+» Folklore:

" Google-ing, Stack Overflow, generative Al, that rando in Discord

+ Tradeoffs? Relative strengths & weaknesses?

W UNIVERSITY of WASHINGTON LO3: Pointers

Lecture Outline (1/4)

Pointer Basics

J/
’0

« Pointer Arithmetic
<« Pointers as Parameters
<« Function Pointers

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointers

+ Variables that store addresses
" |t points to somewhere in the process’ virtual address space
" &foo produces the virtual address of foo eq/u,"vaﬂen"' dwﬁ‘\’ba

‘/—_\ opr\q‘.s"'(,'r\"l"

= Generic definition: typex name; Jor[type *name; |

= Recommended: do not define multiple pointers on same line:

(int “pl, p2; | not the same as | int *pl, *p2; |
" Instead, use: (5t *pl; i’
int *p2;

« Dereference a pointer using the unary * operator

= Access the memory referred to by a pointer

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Box-and-Arrow Diagrams (1/4)

% rdi 9. s boxarrow.c
(int main(int argc, char*x argv) {)
int x = 1;
int arr[3] = {2) 3, 4}; Y\Et& a&),g;f, Y

intx p = &arr[1]; /////’—M\,_ec\ae"‘f’)"’C
&

printf("&x: %p; x: %d\n", X);

printf("&arr[0]: %p; arr[0]: %d\n",[&arr[0], arr[0]);
printf("&arr[2]: %p; arr[2]: %d\n")} &arr[2], arr[2]);
printf("&p: %p; p: %p; *p: %d\n",‘!’ P, *pP);

return EXIT_SUCCESS;
\J Y

address [name | value

S,f— el — &acl(.S’h\(,‘(

W UNIVERSITY of WASHINGTON

LO3: Pointers

Box-and-Arrow Diagrams (2/4)

CSE333, Winter 2026

boxarrow.c

r

int x = 1;
int arr[3] = {2, 3, 4};
intx p = &arr[1];

printf("&x: %p; x:
printf("&arr[0]: %p;
printf("&arr[2]: %p;
printf("&p: %p; p: %p;

return EXIT_SUCCESS;

int main(int argc, char*xx argv) {

%d\n", &x, x);
arr[0]: %d\n", &arr[0], arr[0]);
arr[2]: %d\n", &arr[2], arr[2]);

*p: %d\n", &p, p, *p);

~

S y
address | name | value &x X value
&arr|[2] |arr[2] value

&arr[1] |arr[1] value

&arr|[0] |arr[0] value

&p P value

()uLew Joj dwedy yoel1s

W UNIVERSITY of WASHINGTON LO3: Pointers

Box-and-Arrow Diagrams (3/4)

CSE333, Winter 2026

boxarrow.c

(int main(int argc, charx*x argv) {

int x = 1;
int arr[3] = {2, 3, 4};
intx p = &arr[1];

printf("&x: %p; x: %d\n", &x, X);

printf("&p: %p; p: %p; *p: %d\n", &p, p, *p);

return EXIT_SUCCESS;

printf("&arr[0]: %p; arr[0]: %d\n", &arr[0], arr[0]);
printf("&arr[2]: %p; arr[2]: %d\n", &arr[2], arr[2]);

~N

S y
address | name | value N\ &x X 1
§¢x e &arr[2] |arr[2] 4
g“ﬁ ‘&ﬁ&z arr[1] |arr[1] 3
&arr|[0] |arr[0] 2

v &p p &arr[1]

10

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Box-and-Arrow Diagrams (4/4)
boxarrow.c

(int main(int argc, charx*x argv) {

int x = 1;
int arr[3] = {2, 3, 4};
intx p = &arr[1];

printf("&x: %p; x: %d\n", &x, X);

printf("&arr[0]: %p; arr[0]: %d\n", &arr[0], arr[0]);
printf("&arr[2]: %p; arr[2]: %d\n", &arr[2], arr[2]);
printf("&p: %p; p: %p; *p: %d\n", &p, p, *p);

return EXIT_SUCCESS;

S y
address | name | value Ox7fff..4c X 1
Ox7fff.48 | arr[2] 4
Ox7fff..44 | arr[1] 3
p: gt aar Ox7fff..40 | arr[0] 2
¥p: A sda & 687 gy 7FFF 38| p OX 7 f EFA4

oW
Lollgw arfo 11

WA UNIVERSITY of WASHINGTON LO3: Pointers

Lecture Outline (2/4)

+ Pointer Basics

+ Pointer Arithmetic

+ Pointers as Parameters
+ Function Pointers

CSE333, Winter 2026

12

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointer Arithmetic

+ Pointers are typed

= Tells the compiler the size of the data you are pointing to
= Exception: void* is a generic pointer (i.e., a placeholder)

» Pointer arithmetic is scaled by s1zeof (xp)
= Works nicely for arrays '\/ﬁiﬁ:ﬁeh\“ﬁ
" Does not work on voidx, since void doesn’t have a size!

- Not allowed, though confusingly GCC allows it as an extension =

+ Valid pointer arithmetic:
= Add/subtract an integer to/from a pointer
= Subtract two pointers (within stack frame or malloc block)
= Compare pointers (<, <=, ==, I =, >, >=), including NULL

= ... but plenty of valid-but-inadvisable operations, too
13

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointers and Arrays

+ A pointer can point to an array element

" You can use array indexing notation on pointers

- ptr[i]is*(ptr+1) with pointer arithmetic — reference the data
elements forward from ptr P'}r[J e #(pte=) S (ivpte) s i L]

" An array name’s value is the beginning address of the array ’\1 \‘gg
- Like a pointer to the first element of array, but can’t change D X A

/’\ y “‘h(-

(int a[L/é’ 10, 20, 30, 40, 50}; et

intx pl 3 [3]; // refers to a's 4th element

intx p2”s [@]; // refers to a's 1st element

intx p37= // refers to a's 1st element

*pl = 100;

*p2 = 200;

pl[1] = 300;

p2[1] = 400;
| P3[2] = 500; // final: 200, 400, 500, 100, 300 |

14

WA UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333j

At this point in the code, what values are stored in

arr[]? (int main(int argc, charxx argv) {
int arr[3] = {2, 3, 4};

intx p = &arr[1];

intxx dp = &p; // pointer to a pointer

\
boxarrow?2.c

*(xdp) += 1;
p += 1;
*(xdp) += 1
m—t=P return EXIT_SUCCESS;
S Ox7fff. 73 arr[2]
A Ox7fff.74 | arr[1]
Ox7fff.70 | arr[0]
B. {3, 4,5}
C. {2, G'QL - Ox7fff..68 p OX7fff..74
| D. {2, 4,5}
'E. We're lost... Ox7FFf.60| dp | OXTFFf..68

15

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Note: arrow points to next

Practice SOIUtion (1/4) instruction to be executed.
boxarrow?2.c
(int main(int argc, char*xx argv) { R
int arr[3] = {2, 3, 4};
intx p = &arr[1];
intxx dp = &p; // pointer to a pointer
m—tpp * (xdp) += 1; [/ same ag **dp =1,
p += 1;
*(xdp) += 1;
return EXIT_SUCCESS;
}
8 Ox7fff.78 | arr[2] 4
> Ox7FFf..74 | arr[1] Z4
address | name | value Ox7Fff..70 |arr[0] 2

— Ox7fff..68| p | OX7fef.74

Ox7fff..60| dp | Ox7fef..68

16

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Note: arrow points to next

Practice Solution (2/4) instruction to be executed.
boxarrow2.c
4)

int main(int argc, char*xx argv) {
int arr[3] = {2, 3, 4};
intx p = &arr[1];
intxx dp = &p; // pointer to a pointer

*(xdp) += 1;
q p += l;

*(xdp) += 1j
return EXIT_SUCCESS;

+

L Ox7fff.78 | arr[2] 4

» Ox7fff.74 | arr[1]
address | name | value Ox7Fff..70 |arr[0] 2

— Ox7fff..68| p | OX7fef.74

Ox7fff..60| dp | Ox7fef..68

17

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Note: arrow points to next

Practice Solution (3/4) instruction to be executed.
boxarrow2.c
4)

int main(int argc, char*xx argv) {
int arr[3] = {2, 3, 4};
intx p = &arr[1];
intxx dp = &p; // pointer to a pointer

*(*dp) += 13
p += 1;
=T *(xdp) += 1;

return EXIT_SUCCESS;

+
L —> Ox7fff..78 [arr[2] 4
Ox7fff.74 | arr[1]
address | name | value Ox7Fff..70 |arr[0] 2

—> Ox7fff..68| p | OX7fef..78

Ox7fff..60| dp | Ox7fef..68

18

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Note: arrow points to next

Practice SOIUtion (4/4) instruction to be executed.
boxarrow?2.c
(int main(int argc, char*xx argv) { R
int arr[3] = {2, 3, 4};
intx p = &arr[1];
intxx dp = &p; // pointer to a pointer
*(xdp) += 1;
p += 1;
—t> «(xdp) += 1
return EXIT_SUCCESS;
}
L — Ox7fff..78 | arr[2] Vs
Ox7fff.74 | arr[1]
address | name | value Ox7fff..70 | arr[0] 2

— Ox7fff..68| p | Ox7ff..78

Ox7fff..60| dp | Ox7fef..68

19

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Endianness

» Memory is byte-addressed, so endianness determines
what ordering that multi-byte data gets read and stored
in memory
" Big-endian: Least significant byte has highest/biggest address

g% Little-endian: Least significant byte has lowest/littlest address

(x%-é"l) - \

+~ Example: 4-byte data Oxg_lnggS]@at address 0x100

N\

0x100 Ox101 0x102 0x103

Big-Endian (| a1 | b2 | 3 | d4
N\
0x100 0x101 0x102 0x103

Little-Endian da c3 b2 al

20

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Note: Arrow points

Pointer Arithmetic Example (1/10) tonext instruction.

W\
s Stack 1‘L$Auﬁ“

) s)
int main(int argc, char*x argv) { 86-64)
—L> int arr[3] = {1, 2, 3}; (assume X

int*x int_ptr = &arr[0];
charx char_ptr = (charx) int_ptr;

int_ptr += 1;
int_ptr += 25 // uh oh

arr[2]
char_ptr += 1; arr[1]
char_ptr += 2; arr[0]

return EXIT_SUCCESS;

J J char_ptr
pointerarithmetic.c

int_ptr

F0 4 | +Z_I +73

21

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointer Arithmetic Example (2/10)

(int main(int argc, char*x argv) { R (assur?’lt:f(lé6-64)
int arr[3] = {1, 2, 3}; | | |
=P intx int_ptr = &arr[0]; | | |
charx char_ptr = (charx) int_ptr; : : :
int_ptr += 1; L
int_ptr += 2; // uh oh arr[21{03 00 00! 00
char_ptr += 1; arr[1]1/02 00,00 00
— o | | |
char_ptr += 2; arr[0]/O1 100, 00! 00
return EXIT_SUCCESS; | l
¢ J char_ptr

pointerarithmetic.c

int_ptr

22

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointer Arithmetic Example (3/10)

(int main(int argc, char*x argv) { R (assurit:§§6—64)
int arr[3] = {1, 2, 3}; | | |
int* dint_ptr = &arr[0]; | | |

== charx char_ptr = (charx) int_ptr; : : :
int_ptr += 1; L
int_ptr += 2; // uh oh arr[21{03 00 00! 00
char_ptr += 1; arr[1]1/02 00, 00,00
return EXIT_SUCCESS;

i

J J | char_ptr |
pointerarithmetic.c '
|

|

|

23

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointer Arithmetic Example (4/10)

(int main(int argc, char*x argv) { R (assurit:§§6—64)
int arr[3] = {1, 2, 3}; | | |
int*x int_ptr = &arr[0]; : : I
charx char_ptr = (charx) int_ptr; : : :
int_ptr += 2; // uh oh arr[21{03 00 00! 00
char_ptr += 1; arr[1]1/02 00,00 00

— . | |
char_ptr += 2; arr[0 00 : 00 : 00
return EXIT_SUCCESS; F=-

\J J | char_ptr | | |

pointerarithmetic.c ' i |

| |
int_ptr | ! !

24

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointer Arithmetic Example (5/10)

-

int main(int argc, char**x argv) { h (assurit:f(lé6-64)

int arr[3] = {1, 2, 3};
int*x int_ptr = &arr[0];
charx char_ptr = (charx) int_ptr;

=1 dint_ptr += 1;
int_ptr += 25 // uh oh

arr[2]]03 | 00 | 00 | 00
char_ptr += 1; arr[1]1/02 00,00 00
return EXIT_SUCCESS; !
J J | char_ptr :
|
|

pointerarithmetic.c

int_ptr

int_ptr: Ox7ffffffde0l0
xint_ptr: 1

25

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointer Arithmetic Example (6/10)

(int main(int argc, char*x argv) { R (assurit:§§6—64)
int arr[3] = {1, 2, 3}; | | |
int* dint_ptr = &arr[0]; | | |
charx char_ptr = (charx) int_ptr; : : :
int_ptr += 1; L

=t=p int_ptr += 25 // uh oh arr[2]1/03 1 00 00 00
char_ptr += 1; arr[1l
char_ptr += 2; arr[0]/O1 100, 00! 00
return EXIT_SUCCESS; F=-

€ J | char_ptr | | |

pointerarithmetic.c ! i |

i i
int_ptr ! ! !

int_ptr: Ox7ffffffde0l4
xint_ptr: 2

26

W UNIVERSITY of WASHINGTON

LO3: Pointers

CSE333, Winter 2026

Pointer Arithmetic Example (7/10)

-

int arr[3] = {1, 2, 3};
int*x int_ptr = &arr[0];

int_ptr += 1;
int_ptr += 25 // uh oh

=t Char_ptr += 1;

char_ptr += 2;

return EXIT_SUCCESS;

\}

int main(int argc, char*x argv) { h

charx char_ptr = (charx) int_ptr;

Stack
(assume x86-64)

pointerarithmetic.c

int_ptr: Ox7ffffffdedlc
xint_ptr: ?272?

arr[2]/03 0000 00
arr[1]1/02 /00,00 00
arr[61/011 00 00 00

char_ptr

int_ptr

27

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointer Arithmetic Example (8/10)

(int main(int argc, char*x argv) { R (assuriteaf(lé6—64)
int arr[3] = {1, 2, 3}; | | |
int*x int_ptr = &arr[0]; : : I
charx char_ptr = (charx) int_ptr; : : :
Tnt_ptr += 13 > : : :
IWE_pEr = 25 /7wl ef arr[2]/03 00 00 00

=t char_ptr += 1; arr[1]1/02 00,00 00
— . | |

char_ptr += 23 arr[@].@@}@@}@@
return EXIT_SUCCESS; F=-

J J | char_ptr | | |

pointerarithmetic.c ! i |

i i
int_ptr ! ! !

char_ptr: Ox7ffffffde010
*char_ptr: 1

28

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointer Arithmetic Example (9/10)

(int main(int argc, charxx argv) { h (assuriteaf(lé6—64)
int arr[3] = {1, 2, 3}; | | |
int*x int_ptr = &arr[0]; : : I
charx char_ptr = (charx) int_ptr; : : :
int_ptr += 1; > | | |
int_ptr += 25 // uh oh arr[2] @3 i @@ i @@ i @@
char_ptr += 1; arr[1]1/02 00,00 00

=P char_ptr += 2; '
’ arr[O]GlI |®®i0®
return EXIT_SUCCESS; | |

J J | char_ptr | | |

pointerarithmetic.c ' i |

i i
int_ptr | | !

char_ptr: Ox7ffffffde0ll
*char_ptr: 0

29

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Pointer Arithmetic Example (10/10)

(int main(int argc, char*x argv) { R (assuriteaf(lé6—64)
int arr[3] = {1, 2, 3}; | | |
int*x int_ptr = &arr[0]; : : I
charx char_ptr = (charx) int_ptr; : : :
Tnt_ptr += 13 > : : :
IWE_pEr = 25 /7wl ef arr[2]/03 00 00 00
char_ptr += 1; arr[1]1/02 00,00 00

— . | |
char_ptr += 2; arr(0]/01 00 00 00|
—> return EXTT_SUCCESS; T

J J | char_ptr | | |

pointerarithmetic.c ' i |

| |
int_ptr | ! !

char_ptr: Ox7ffffffde013
*char_ptr: 0

30

WA UNIVERSITY of WASHINGTON LO3: Pointers

Lecture Outline (3/4)

Pointer Basics

L)

0’0

Pointer Arithmetic

L)

0’0

L)

» Pointers as Parameters

()

Function Pointers

L)

0’0

CSE333, Winter 2026

31

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO3: Pointers

Cis Call-By-Value

+» C(and Java) pass arguments by value

= Callee receives a local copy of the argument
- Register or Stack
" |f the callee modifies a parameter, the caller’s copy isn’t modified

(Vvoid Swap(int a, int b) {
int tmp = a;
a = b;
b = tmp;

¥

int main(int argc, char*x argv) {
int a = 42, b = -7;
Swap (a, b);

32

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Note: Arrow points

Bro ken Swap (1/7) to next instruction.

brokenswap.c
p

void Swap(int a, int b) {
int tmp = a;
a = b;
b = tmp;

}

int main(int argc, char*xx argv) {
= int a = 42, b = -7;
Swap(a, b);

33

WA UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Broken Swap (2/7)

brokenswap.c

(Vvoid Swap(int a, int b) { h
int tmp = a;
a = b;
b = tmp;
ks

int main(int argc, char*xx argv) {
int a = 42, b = -7;
= Swap(a, b);

\ e o o)

34

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Broken Swap (3/7)

brokenswap.c

(Vvoid Swap(int a, int b) { h
= int tmp = a;
a = b;
b = tmp;

}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap(a, b);

35

CSE333, Winter 2026

WA UNIVERSITY of WASHINGTON LO3: Pointers

Broken Swap (4/7)

brokenswap.c

(void Swap(int a, int b) { R
int tmp = a;
- a = b;
b = tmp;

}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap(a, b);

36

LO3: Pointers CSE333, Winter 2026

WA UNIVERSITY of WASHINGTON

Broken Swap (5/7)

brokenswap.c

(void Swap(int a, int b) { R
int tmp = a;
a = b;
= b = tmp;

}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap(a, b);

37

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Broken Swap (6/7)

brokenswap.c

(Vvoid Swap(int a, int b) { h
int tmp = a;
a = b;
b = tmp;

—}}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap(a, b);

38

WA UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Broken Swap (7/7)

brokenswap.c

(Vvoid Swap(int a, int b) { h
int tmp = a;
a = b;
b = tmp;

}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap(a, b);

-1:- e)

39

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Faking Call-By-Reference in C

+ Can use pointers to approximate call-by-reference

= Callee still receives a copy of the pointer (i.e., call-by-value), but it
can modify something in the caller’s scope by dereferencing the
pointer parameter

- lo-l’r‘ }_)__ P')’V‘

(void Swap(int* a, intx b) {
int tmp = *a;
*a = *b;
*b = tmp;
}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap (&a, &b);

40

WA UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Note: Arrow points

Fixed Swap (1/6) to next instruction.

swap.c
p

void Swap(intx a, intx b) {
int tmp = *a;
*a = *b;
*b = tmp;

}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
= Swap (&a, &b);

\ e o o)

41

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Fixed Swap (2/6)

swap.c
p

void Swap(intx a, intx b) {
= nt tmp = *a;

*xg = *b;

*b = tmp;
}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap (&a, &b);

42

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Fixed Swap (3/6)

B

swap.c
p

void Swap(intx a, intx b) {
int tmp = *a;

= *xa = *b;
*b = tmp;

}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap (&a, &b);

43

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Fixed Swap (4/6)

swap.c
p

void Swap(intx a, intx b) {
int tmp = *a;
*a = *b;

=t xb = tmp;

}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap (&a, &b);

44

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Fixed Swap (5/6)

swap.c
p

void Swap(intx a, intx b) {
int tmp = *a;
*a = *b;
*b = tmp;

—p]

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap (&a, &b);

45

WA UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Fixed Swap (6/6)

swap.c
p

void Swap(intx a, intx b) {
int tmp = *a;
*a = *b;
*b = tmp;

}

int main(int argc, char*xx argv) {
int a = 42, b = -7;
Swap (&a, &b);

-1:- e)

46

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Warning: Misuse of output

Output Parameters

parameters is the largest
cause of errors in this course!

« QOutput parameter

= A pointer parameter used to store (via dereference) a function
output outside of the function’s stack frame

- Typically points to/modifies something in the Caller’s scope

= Useful if you want to have multiple return values

+» Setup and usage:
1) Caller creates space for the data (e.g., type var;)
2) Caller passes in a pointer to Callee (e.g., &var)
3) Callee takes in output parameter (e.g., type*x outparam)
4) Callee uses parameter to set output (e.g., xoutparam = value;)
5) Caller accesses output via modified data (e.g., var)

47

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

0 PO" EVGI‘YWhere pollev.com/cse333j

Which of the following are invalid ways to
invoke GenerateString()?

= Of the working ways, which would be preferred?

void GenerateString(charx*x output) {
*output = "Hello there\n";

+
A. charxx result; C. charx result[1] = {NULL};
GenerateString(result); GenerateString(result);
printf("%s", *result); printf("%s", result[0]);
B. | charx str; D. | char* result;
charxx result = &str; GenerateString(&result);
GenerateString(result); printf("%s", result);
printf("%s", str);

E. We're lost...

48

W UNIVERSITY of WASHINGTON

LO3: Pointers

CSE333, Winter 2026

Which of the following are invalid ways to
invoke GenerateString()?

}

void _GenerateString(char*xx output) {
: "Hello there\n";

A. | charxx result; /unindialized

GenerateString(resuldb) ;
printf("%s", xresult);

o

o w\‘- r__‘é\ 7

|

T

outpuct
dereferer\c(il mystery dofr

is Likely o canse negpected
belowi>r Ce.s., Ses’(&w\‘\')

C.

«
6& \’ Ckaf

-

GenerateString (Cesult);

charx result[fj = {NULL};

printf("%s", result[0]);

resul (. “&

gb
‘/__—\

—

&R

Ouct pv\"'

"Hello thee\n"

lets us

Aerc‘Fefeng;u\a oAdpar
U.?()oo.\‘e result [D’L

49

WA UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Note: Arrow points
Prefe rred Usage to next instruction.

genstr.c
N

[),’,Void GenerateString(char*x output);

int main(int argc, char*x argv) {
char* result;
:t GenerateString(&result);
printf("%s", result);

return EXIT_SUCCESS;
}

void GenerateString(charx*x output) {

:6 *output = "Hello there\n";
J/

v Works correctly (unlike A)
v Minimizes memory usage (unlike B)

‘/ . .
Telile dhe re Intent is clear (unlike C)

50

WA UNIVERSITY of WASHINGTON LO3: Pointers

Lecture Outline (4/4)

» Pointer Basics

J/
>

+ Pointer Arithmetic
<« Pointers as Parameters
+ Function Pointers

CSE333, Winter 2026

51

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

. . Jm«D ’FOO 33 ces,
Function Pointers Y
PC
+» Based on what you know about assembly, what is a
function name, really? |abel— o.ddvess

= Can use pointers that store addresses of functions!

‘Func‘h'on ()oi/\"}er 5 l‘V\T ‘FOO C\n‘\’))‘
| * it 7—’(0 N
. . bir\’}er.l fon ction vshely > lr\‘l‘ (yﬁp)éﬂi S
+ Generic format: peddbpe 3 LN

[returnType (i name) (typel, .., typeN)]

= |ooks like a function prototype with extra * in front of name
= Why are parentheses around (* name) needed? *(}dﬁe;@*ﬂf;‘_;t
/Ae're‘&m“‘e o protod vpe
. . w
+ Using the function: [(*name) (argl, .., argN)]
= Calls the pointed-to function with the given arguments and return
the return value

52

W UNIVERSITY of WASHINGTON LO3: Pointers

Function Pointer Example (1/2)

CSE333, Winter 2026

=+ Map () performs operation on each element of an array

/%define LEN 4

n _}\.D . o
&;\;ﬂ int Negate(int num) {return -num;} funcptr parameter
b ded|((iNt Square(int num) {return num x num;}
‘\V\'fe v
Y)’O

// perform operation pointed to on egCh array element
void Map(int a[], int len, int (x op)(int n)) {
for (int i = 05 1 < len; i++) {

al[i] = (xop)(alil]); // dereference function pointer
! ¥ funcptr dereference
int main(int argc, char** argv) {
int arr[LEN] = {-1, 0, 1, 2}; funcptr definition

int (x op)(int n);* // function pointer called 'op'

Map(arr, LEN, op); — funcptr assignment
N
_ - ol diedtly s funchion name heve

op = Square; . // function name returns addr (like array)

N

J

(squore)
Map.C 4

W UNIVERSITY of WASHINGTON LO3: Pointers

Function Pointer Example (2/2)

CSE333, Winter 2026

+ C allows you to omit & on a function name (like arrays)

and omit * when calling pointed-to function

("4define LEN 4

int Negate(int num) {return -num;}
int Square(int num) {return num * num;}

// perform operation pointed to on each array element
void Map(int a[], int len, int (x op)(int n)) {
for (int i = 0; i < len; i++) {
ali] = op(alil]); // dereference function pointer

}

} implicit funcptr dereference (no * needed)

int main(int argc, char*x argv) {
int arr[LEN] = {-1, 0, 1, 2};
Map(arr, LEN, Square);

g . no & needed for func ptr argument

54

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Extra Exercise #1

+ Use a box-and-arrow diagram for the following program
and explain what it prints out:

/}include <stdio.h>)

int foo(int*x bar, int*xx baz) {
xbar = 5;
x(bar+l) = 6;
xbaz = bar + 2;
return *((xbaz)+1);

}

int main(int argc, char*xx argv) {
int arr[4] = {1, 2, 3, 4};
intx ptr;

arr[0] = foo(&arr[0], &ptr);
printf("%d %d %d %d %d\n",

arr[0], arr[1], arr[2], arr[3], *ptr);
return 0;

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Extra Exercise #2

» Write a program that determines and prints out whether
the computer it is running on is little-endian or big-
endian.

= Hint: pointerarithmetic.c from today’s lecture or
show_bytes.c from 351

56

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Extra Exercise #3

« Worite a function that:

" Arguments: [1] an array of ints and [2] an array length
= Malloc’s an int* array of the same element length

" |nitializes each element of the newly-allocated array to point to
the corresponding element of the passed-in array

= Returns a pointer to the newly-allocated array

57

W UNIVERSITY of WASHINGTON LO3: Pointers CSE333, Winter 2026

Extra Exercise #4

+ Write a function that:
= Accepts a function pointer and an integer as arguments
" |nvokes the pointed-to function with the integer as its argument

58

	Slide 1: About how long did Exercises 0 and 1 take you? (two polls)
	Slide 2: Systems Programming Pointers
	Slide 3: Relevant Course Information (1/3)
	Slide 4: Relevant Course Information (2/3)
	Slide 5: Relevant Course Information (3/3)
	Slide 6: Lecture Outline (1/4)
	Slide 7: Pointers
	Slide 8: Box-and-Arrow Diagrams (1/4)
	Slide 9: Box-and-Arrow Diagrams (2/4)
	Slide 10: Box-and-Arrow Diagrams (3/4)
	Slide 11: Box-and-Arrow Diagrams (4/4)
	Slide 12: Lecture Outline (2/4)
	Slide 13: Pointer Arithmetic
	Slide 14: Pointers and Arrays
	Slide 15: At this point in the code, what values are stored in arr[]?
	Slide 16: Practice Solution (1/4)
	Slide 17: Practice Solution (2/4)
	Slide 18: Practice Solution (3/4)
	Slide 19: Practice Solution (4/4)
	Slide 20: Endianness
	Slide 21: Pointer Arithmetic Example (1/10)
	Slide 22: Pointer Arithmetic Example (2/10)
	Slide 23: Pointer Arithmetic Example (3/10)
	Slide 24: Pointer Arithmetic Example (4/10)
	Slide 25: Pointer Arithmetic Example (5/10)
	Slide 26: Pointer Arithmetic Example (6/10)
	Slide 27: Pointer Arithmetic Example (7/10)
	Slide 28: Pointer Arithmetic Example (8/10)
	Slide 29: Pointer Arithmetic Example (9/10)
	Slide 30: Pointer Arithmetic Example (10/10)
	Slide 31: Lecture Outline (3/4)
	Slide 32: C is Call-By-Value
	Slide 33: Broken Swap (1/7)
	Slide 34: Broken Swap (2/7)
	Slide 35: Broken Swap (3/7)
	Slide 36: Broken Swap (4/7)
	Slide 37: Broken Swap (5/7)
	Slide 38: Broken Swap (6/7)
	Slide 39: Broken Swap (7/7)
	Slide 40: Faking Call-By-Reference in C
	Slide 41: Fixed Swap (1/6)
	Slide 42: Fixed Swap (2/6)
	Slide 43: Fixed Swap (3/6)
	Slide 44: Fixed Swap (4/6)
	Slide 45: Fixed Swap (5/6)
	Slide 46: Fixed Swap (6/6)
	Slide 47: Output Parameters
	Slide 48
	Slide 49: Which of the following are invalid ways to invoke GenerateString()?
	Slide 50: Preferred Usage
	Slide 51: Lecture Outline (4/4)
	Slide 52: Function Pointers
	Slide 53: Function Pointer Example (1/2)
	Slide 54: Function Pointer Example (2/2)
	Slide 55: Extra Exercise #1
	Slide 56: Extra Exercise #2
	Slide 57: Extra Exercise #3
	Slide 58: Extra Exercise #4

