
CSE333, Winter 2026L03: Pointers

1

About how long did Exercises 0 and 1 take
you? (two polls)

A. [0, 2) hours
B. [2, 4) hours
C. [4, 6) hours
D. [6, 8) hours
E. 8+ Hours
F. I didn’t submit / I prefer not to say

pollev.com/cse333j

CSE333, Winter 2026L03: Pointers

Systems Programming
Pointers
Systems Programming
Pointers

Instructors:

Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE333, Winter 2026L03: Pointers

Relevant Course Information (1/3)

❖ Exercise grading (see Ed post #53)

▪ Autograder scores visible immediately after deadline; sample
solutions released same day as deadline

▪ Grades (out of 8):

• Correctness: Output (3)

• Tools: Compilation (1), Valgrind (1)

• Style: Linter (1), Other Style [manual] (2)

▪ Style things to watch for:

• FOLLOW THE SPEC (especially the Style Guide section)

• Check the Google C++ Style Guide

• Make a judgment call and document

▪ Keep style tips in mind, as you will need to use them in HW

3

https://edstem.org/us/courses/89933/discussion/7492744

CSE333, Winter 2026L03: Pointers

Relevant Course Information (2/3)

❖ Pre-quarter survey (Canvas quiz) due tonight

❖ Exercise 2 out today and due Monday (1/12) morning

▪ First exercise submitted via Gitlab tagging (ex2-submit)

▪ Make a private Ed post if you don’t have your exercise repo yet

❖ Homework 1 out tonight, due in 2 weeks (Thu 1/22)

▪ Linked list and hash table implementations in C

▪ Get starter code by cloning your new homework repo

4

CSE333, Winter 2026L03: Pointers

Relevant Course Information (3/3)

❖ Documentation:

▪ man pages, books

▪ Reference websites: cplusplus.org, man7.org,
gcc.gnu.org, etc.

❖ Folklore:

▪ Google-ing, Stack Overflow, generative AI, that rando in Discord

❖ Tradeoffs? Relative strengths & weaknesses?

5

CSE333, Winter 2026L03: Pointers

Lecture Outline (1/4)

❖ Pointer Basics

❖ Pointer Arithmetic

❖ Pointers as Parameters

❖ Function Pointers

6

CSE333, Winter 2026L03: Pointers

Pointers

❖ Variables that store addresses

▪ It points to somewhere in the process’ virtual address space

▪ &foo produces the virtual address of foo

❖ Generic definition: type* name; or type *name;

▪ Recommended: do not define multiple pointers on same line:
int *p1, p2; not the same as int *p1, *p2;

▪ Instead, use:

❖ Dereference a pointer using the unary * operator

▪ Access the memory referred to by a pointer

7

int *p1, p2; int *p1, *p2;

int *p1;
int *p2;

type* name; type *name;

CSE333, Winter 2026L03: Pointers

Box-and-Arrow Diagrams (1/4)

8

int main(int argc, char** argv) {
 int x = 1;
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];

 printf("&x: %p; x: %d\n", &x, x);
 printf("&arr[0]: %p; arr[0]: %d\n", &arr[0], arr[0]);
 printf("&arr[2]: %p; arr[2]: %d\n", &arr[2], arr[2]);
 printf("&p: %p; p: %p; *p: %d\n", &p, p, *p);

 return EXIT_SUCCESS;
}

boxarrow.c

address name value

CSE333, Winter 2026L03: Pointers

Box-and-Arrow Diagrams (2/4)

9

boxarrow.c

address name value &x x value

&arr[2] arr[2] value

&arr[1] arr[1] value

&arr[0] arr[0] value

&p p value

stack fram
e fo

r m
a
i
n
(
)

int main(int argc, char** argv) {
 int x = 1;
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];

 printf("&x: %p; x: %d\n", &x, x);
 printf("&arr[0]: %p; arr[0]: %d\n", &arr[0], arr[0]);
 printf("&arr[2]: %p; arr[2]: %d\n", &arr[2], arr[2]);
 printf("&p: %p; p: %p; *p: %d\n", &p, p, *p);

 return EXIT_SUCCESS;
}

CSE333, Winter 2026L03: Pointers

Box-and-Arrow Diagrams (3/4)

10

boxarrow.c

address name value &x x 1

&arr[2] arr[2] 4

&arr[1] arr[1] 3

&arr[0] arr[0] 2

&p p &arr[1]

int main(int argc, char** argv) {
 int x = 1;
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];

 printf("&x: %p; x: %d\n", &x, x);
 printf("&arr[0]: %p; arr[0]: %d\n", &arr[0], arr[0]);
 printf("&arr[2]: %p; arr[2]: %d\n", &arr[2], arr[2]);
 printf("&p: %p; p: %p; *p: %d\n", &p, p, *p);

 return EXIT_SUCCESS;
}

CSE333, Winter 2026L03: Pointers

Box-and-Arrow Diagrams (4/4)

11

boxarrow.c

address name value 0x7fff…4c x 1

0x7fff…48 arr[2] 4

0x7fff…44 arr[1] 3

0x7fff…40 arr[0] 2

0x7fff…38 p 0x7fff…44

int main(int argc, char** argv) {
 int x = 1;
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];

 printf("&x: %p; x: %d\n", &x, x);
 printf("&arr[0]: %p; arr[0]: %d\n", &arr[0], arr[0]);
 printf("&arr[2]: %p; arr[2]: %d\n", &arr[2], arr[2]);
 printf("&p: %p; p: %p; *p: %d\n", &p, p, *p);

 return EXIT_SUCCESS;
}

CSE333, Winter 2026L03: Pointers

Lecture Outline (2/4)

❖ Pointer Basics

❖ Pointer Arithmetic

❖ Pointers as Parameters

❖ Function Pointers

12

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic

❖ Pointers are typed

▪ Tells the compiler the size of the data you are pointing to

▪ Exception: void* is a generic pointer (i.e., a placeholder)

❖ Pointer arithmetic is scaled by sizeof(*p)

▪ Works nicely for arrays

▪ Does not work on void*, since void doesn’t have a size!

• Not allowed, though confusingly GCC allows it as an extension

❖ Valid pointer arithmetic:

▪ Add/subtract an integer to/from a pointer

▪ Subtract two pointers (within stack frame or malloc block)

▪ Compare pointers (<, <=, ==, !=, >, >=), including NULL

▪ … but plenty of valid-but-inadvisable operations, too
13

CSE333, Winter 2026L03: Pointers

Pointers and Arrays

❖ A pointer can point to an array element

▪ You can use array indexing notation on pointers

• ptr[i] is *(ptr+i) with pointer arithmetic – reference the data i
elements forward from ptr

▪ An array name’s value is the beginning address of the array

• Like a pointer to the first element of array, but can’t change

14

int a[] = {10, 20, 30, 40, 50};
int* p1 = &a[3]; // refers to a's 4th element
int* p2 = &a[0]; // refers to a's 1st element
int* p3 = a; // refers to a's 1st element

*p1 = 100;
*p2 = 200;
p1[1] = 300;
p2[1] = 400;
p3[2] = 500; // final: 200, 400, 500, 100, 300

CSE333, Winter 2026L03: Pointers

15

At this point in the code, what values are stored in
arr[]?

A. {2, 3, 4}
B. {3, 4, 5}
C. {2, 6, 4}
D. {2, 4, 5}
E. We’re lost…

int main(int argc, char** argv) {
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];
 int** dp = &p; // pointer to a pointer
 *(*dp) += 1;
 p += 1;
 *(*dp) += 1;
 return EXIT_SUCCESS;
}

boxarrow2.c

0x7fff…78 arr[2] 4

0x7fff…74 arr[1] 3

0x7fff…70 arr[0] 2

0x7fff…68 p 0x7fff…74

0x7fff…60 dp 0x7fff…68

pollev.com/cse333j

CSE333, Winter 2026L03: Pointers

Practice Solution (1/4)

16

int main(int argc, char** argv) {
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];
 int** dp = &p; // pointer to a pointer

 *(*dp) += 1;
 p += 1;
 *(*dp) += 1;

 return EXIT_SUCCESS;
}

boxarrow2.c

address name value

0x7fff…78 arr[2] 4

0x7fff…74 arr[1] 3

0x7fff…70 arr[0] 2

0x7fff…68 p 0x7fff…74

0x7fff…60 dp 0x7fff…68

4

Note: arrow points to next
instruction to be executed.

CSE333, Winter 2026L03: Pointers

Practice Solution (2/4)

17

int main(int argc, char** argv) {
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];
 int** dp = &p; // pointer to a pointer

 *(*dp) += 1;
 p += 1;
 *(*dp) += 1;

 return EXIT_SUCCESS;
}

boxarrow2.c

address name value

0x7fff…78 arr[2] 4

0x7fff…74 arr[1] 4

0x7fff…70 arr[0] 2

0x7fff…68 p 0x7fff…74

0x7fff…60 dp 0x7fff…68

Note: arrow points to next
instruction to be executed.

CSE333, Winter 2026L03: Pointers

Practice Solution (3/4)

18

int main(int argc, char** argv) {
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];
 int** dp = &p; // pointer to a pointer

 *(*dp) += 1;
 p += 1;
 *(*dp) += 1;

 return EXIT_SUCCESS;
}

boxarrow2.c

address name value

0x7fff…78 arr[2] 4

0x7fff…74 arr[1] 4

0x7fff…70 arr[0] 2

0x7fff…68 p 0x7fff…78

0x7fff…60 dp 0x7fff…68

Note: arrow points to next
instruction to be executed.

CSE333, Winter 2026L03: Pointers

Practice Solution (4/4)

19

int main(int argc, char** argv) {
 int arr[3] = {2, 3, 4};
 int* p = &arr[1];
 int** dp = &p; // pointer to a pointer

 *(*dp) += 1;
 p += 1;
 *(*dp) += 1;

 return EXIT_SUCCESS;
}

boxarrow2.c

address name value

0x7fff…78 arr[2] 4

0x7fff…74 arr[1] 4

0x7fff…70 arr[0] 2

0x7fff…68 p 0x7fff…78

0x7fff…60 dp 0x7fff…68

Note: arrow points to next
instruction to be executed.

5

CSE333, Winter 2026L03: Pointers

Endianness

❖ Memory is byte-addressed, so endianness determines
what ordering that multi-byte data gets read and stored
in memory

▪ Big-endian: Least significant byte has highest/biggest address

▪ Little-endian: Least significant byte has lowest/littlest address

❖ Example: 4-byte data 0xa1b2c3d4 at address 0x100

20

0x100 0x101 0x102 0x103

0x100 0x101 0x102 0x103

Big-Endian

Little-Endian

a1 b2 c3 d4

d4 c3 b2 a1

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (1/10)

21

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2]

arr[1]

arr[0]

char_ptr

int_ptr

Stack
(assume x86-64)

Note: Arrow points
to next instruction.

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (2/10)

22

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2] 03 00 00 00
arr[1] 02 00 00 00
arr[0] 01 00 00 00

char_ptr

int_ptr

Stack
(assume x86-64)

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (3/10)

23

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2] 03 00 00 00
arr[1] 02 00 00 00
arr[0] 01 00 00 00

char_ptr

int_ptr

Stack
(assume x86-64)

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (4/10)

24

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2] 03 00 00 00
arr[1] 02 00 00 00
arr[0] 01 00 00 00

char_ptr

int_ptr

Stack
(assume x86-64)

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (5/10)

25

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2] 03 00 00 00
arr[1] 02 00 00 00
arr[0] 01 00 00 00

char_ptr

int_ptr

Stack
(assume x86-64)

int_ptr: 0x7ffffffde010
*int_ptr: 1

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (6/10)

26

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2] 03 00 00 00
arr[1] 02 00 00 00
arr[0] 01 00 00 00

char_ptr

int_ptr

Stack
(assume x86-64)

int_ptr: 0x7ffffffde014
*int_ptr: 2

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (7/10)

27

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2] 03 00 00 00
arr[1] 02 00 00 00
arr[0] 01 00 00 00

char_ptr

int_ptr

Stack
(assume x86-64)

int_ptr: 0x7ffffffde01c
*int_ptr: ???

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (8/10)

28

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2] 03 00 00 00
arr[1] 02 00 00 00
arr[0] 01 00 00 00

char_ptr

int_ptr

Stack
(assume x86-64)

char_ptr: 0x7ffffffde010
*char_ptr: 1

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (9/10)

29

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2] 03 00 00 00
arr[1] 02 00 00 00
arr[0] 01 00 00 00

char_ptr

int_ptr

Stack
(assume x86-64)

char_ptr: 0x7ffffffde011
*char_ptr: 0

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Pointer Arithmetic Example (10/10)

30

int main(int argc, char** argv) {
 int arr[3] = {1, 2, 3};
 int* int_ptr = &arr[0];
 char* char_ptr = (char*) int_ptr;

 int_ptr += 1;
 int_ptr += 2; // uh oh

 char_ptr += 1;
 char_ptr += 2;

 return EXIT_SUCCESS;
}

arr[2] 03 00 00 00
arr[1] 02 00 00 00
arr[0] 01 00 00 00

char_ptr

int_ptr

Stack
(assume x86-64)

char_ptr: 0x7ffffffde013
*char_ptr: 0

pointerarithmetic.c

CSE333, Winter 2026L03: Pointers

Lecture Outline (3/4)

❖ Pointer Basics

❖ Pointer Arithmetic

❖ Pointers as Parameters

❖ Function Pointers

31

CSE333, Winter 2026L03: Pointers

C is Call-By-Value

❖ C (and Java) pass arguments by value

▪ Callee receives a local copy of the argument

• Register or Stack

▪ If the callee modifies a parameter, the caller’s copy isn’t modified

32

void Swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(a, b);
 ...

CSE333, Winter 2026L03: Pointers

Broken Swap (1/7)

33

void Swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(a, b);
 ...

brokenswap.c

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main

Note: Arrow points
to next instruction.

CSE333, Winter 2026L03: Pointers

Broken Swap (2/7)

34

void Swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(a, b);
 ...

brokenswap.c

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a 42 b -7

CSE333, Winter 2026L03: Pointers

Broken Swap (3/7)

35

void Swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(a, b);
 ...

brokenswap.c

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a 42 b -7

Swap
a 42 b -7

tmp ??

CSE333, Winter 2026L03: Pointers

Broken Swap (4/7)

36

void Swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(a, b);
 ...

brokenswap.c

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a 42 b -7

Swap
a 42 b -7

tmp 42

CSE333, Winter 2026L03: Pointers

Broken Swap (5/7)

37

void Swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(a, b);
 ...

brokenswap.c

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a 42 b -7

Swap
a -7 b -7

tmp 42

CSE333, Winter 2026L03: Pointers

Broken Swap (6/7)

38

void Swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(a, b);
 ...

brokenswap.c

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a 42 b -7

Swap
a -7 b 42

tmp 42

CSE333, Winter 2026L03: Pointers

Broken Swap (7/7)

39

void Swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(a, b);
 ...

brokenswap.c

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a 42 b -7

CSE333, Winter 2026L03: Pointers

Faking Call-By-Reference in C

❖ Can use pointers to approximate call-by-reference

▪ Callee still receives a copy of the pointer (i.e., call-by-value), but it
can modify something in the caller’s scope by dereferencing the
pointer parameter

40

void swap(int a, int b) {
 int tmp = a;
 a = b;
 b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 swap(a, b);
 ...

void Swap(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(&a, &b);
 ...

CSE333, Winter 2026L03: Pointers

Fixed Swap (1/6)

41

void Swap(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(&a, &b);
 ...

swap.c

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a 42 b -7

Note: Arrow points
to next instruction.

CSE333, Winter 2026L03: Pointers

Fixed Swap (2/6)

42

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a 42 b -7

Swap
a b

tmp ??

void Swap(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(&a, &b);
 ...

swap.c

CSE333, Winter 2026L03: Pointers

Fixed Swap (3/6)

43

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a 42 b -7

Swap
a b

tmp 42

void Swap(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(&a, &b);
 ...

swap.c

CSE333, Winter 2026L03: Pointers

Fixed Swap (4/6)

44

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a -7 b -7

Swap
a b

tmp 42

void Swap(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(&a, &b);
 ...

swap.c

CSE333, Winter 2026L03: Pointers

Fixed Swap (5/6)

45

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a -7 b 42

Swap
a b

tmp 42

void Swap(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(&a, &b);
 ...

swap.c

CSE333, Winter 2026L03: Pointers

Fixed Swap (6/6)

46

void Swap(int* a, int* b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

int main(int argc, char** argv) {
 int a = 42, b = -7;
 Swap(&a, &b);
 ...

swap.c

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main a -7 b 42

CSE333, Winter 2026L03: Pointers

Output Parameters

❖ Output parameter

▪ A pointer parameter used to store (via dereference) a function
output outside of the function’s stack frame

• Typically points to/modifies something in the Caller’s scope

▪ Useful if you want to have multiple return values

❖ Setup and usage:

1) Caller creates space for the data (e.g., type var;)

2) Caller passes in a pointer to Callee (e.g., &var)

3) Callee takes in output parameter (e.g., type* outparam)

4) Callee uses parameter to set output (e.g., *outparam = value;)

5) Caller accesses output via modified data (e.g., var)

47

Warning: Misuse of output
parameters is the largest

cause of errors in this course!

CSE333, Winter 2026L03: Pointers

Which of the following are invalid ways to
invoke GenerateString()?
▪ Of the working ways, which would be preferred?

A. C.

B. D.

 E. We’re lost…
48

void GenerateString(char** output) {
 *output = "Hello there\n";
}

char** result;
GenerateString(result);
printf("%s", *result);

char* result;
GenerateString(&result);
printf("%s", result);

char* str;
char** result = &str;
GenerateString(result);
printf("%s", str);

char* result[1] = {NULL};
GenerateString(result);
printf("%s", result[0]);

pollev.com/cse333j

CSE333, Winter 2026L03: Pointers

Which of the following are invalid ways to
invoke GenerateString()?

A. C.

49

void GenerateString(char** output) {
 *output = "Hello there\n";
}

char** result;
GenerateString(result);
printf("%s", *result);

char* result[1] = {NULL};
GenerateString(result);
printf("%s", result[0]);

CSE333, Winter 2026L03: Pointers

50

void GenerateString(char** output);

int main(int argc, char** argv) {
 char* result;
 GenerateString(&result);
 printf("%s", result);

 return EXIT_SUCCESS;
}

void GenerateString(char** output) {
 *output = "Hello there\n";
}

✓Works correctly (unlike A)

✓Minimizes memory usage (unlike B)

✓ Intent is clear (unlike C)

genstr.c
Preferred Usage

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

main result

"Hello there\n"

genStr output

??

D.

Note: Arrow points
to next instruction.

CSE333, Winter 2026L03: Pointers

Lecture Outline (4/4)

❖ Pointer Basics

❖ Pointer Arithmetic

❖ Pointers as Parameters

❖ Function Pointers

51

CSE333, Winter 2026L03: Pointers

Function Pointers

❖ Based on what you know about assembly, what is a
function name, really?

▪ Can use pointers that store addresses of functions!

❖ Generic format:

▪ Looks like a function prototype with extra * in front of name

▪ Why are parentheses around (* name) needed?

❖ Using the function:

▪ Calls the pointed-to function with the given arguments and return
the return value

52

returnType (* name)(type1, …, typeN)

(*name)(arg1, …, argN)

CSE333, Winter 2026L03: Pointers

Function Pointer Example (1/2)

❖ Map() performs operation on each element of an array

53

#define LEN 4

int Negate(int num) {return -num;}
int Square(int num) {return num * num;}

// perform operation pointed to on each array element
void Map(int a[], int len, int (* op)(int n)) {
 for (int i = 0; i < len; i++) {
 a[i] = (*op)(a[i]); // dereference function pointer
 }
}

int main(int argc, char** argv) {
 int arr[LEN] = {-1, 0, 1, 2};
 int (* op)(int n); // function pointer called 'op'
 op = Square; // function name returns addr (like array)
 Map(arr, LEN, op);
 ...

funcptr dereference

funcptr definition

funcptr assignment

map.c

funcptr parameter

CSE333, Winter 2026L03: Pointers

Function Pointer Example (2/2)

❖ C allows you to omit & on a function name (like arrays)
and omit * when calling pointed-to function

54

#define LEN 4

int Negate(int num) {return -num;}
int Square(int num) {return num * num;}

// perform operation pointed to on each array element
void Map(int a[], int len, int (* op)(int n)) {
 for (int i = 0; i < len; i++) {
 a[i] = op(a[i]); // dereference function pointer
 }
}

int main(int argc, char** argv) {
 int arr[LEN] = {-1, 0, 1, 2};
 Map(arr, LEN, Square);
 ...

implicit funcptr dereference (no * needed)

no & needed for func ptr argument

CSE333, Winter 2026L03: Pointers

Extra Exercise #1

❖ Use a box-and-arrow diagram for the following program
and explain what it prints out:

55

#include <stdio.h>

int foo(int* bar, int** baz) {
 *bar = 5;
 *(bar+1) = 6;
 *baz = bar + 2;
 return *((*baz)+1);
}

int main(int argc, char** argv) {
 int arr[4] = {1, 2, 3, 4};
 int* ptr;

 arr[0] = foo(&arr[0], &ptr);
 printf("%d %d %d %d %d\n",
 arr[0], arr[1], arr[2], arr[3], *ptr);
 return 0;
}

CSE333, Winter 2026L03: Pointers

Extra Exercise #2

❖ Write a program that determines and prints out whether
the computer it is running on is little-endian or big-
endian.

▪ Hint: pointerarithmetic.c from today’s lecture or
show_bytes.c from 351

56

CSE333, Winter 2026L03: Pointers

Extra Exercise #3

❖ Write a function that:

▪ Arguments: [1] an array of ints and [2] an array length

▪ Malloc’s an int* array of the same element length

▪ Initializes each element of the newly-allocated array to point to
the corresponding element of the passed-in array

▪ Returns a pointer to the newly-allocated array

57

CSE333, Winter 2026L03: Pointers

Extra Exercise #4

❖ Write a function that:

▪ Accepts a function pointer and an integer as arguments

▪ Invokes the pointed-to function with the integer as its argument

58

	Slide 1: About how long did Exercises 0 and 1 take you? (two polls)
	Slide 2: Systems Programming Pointers
	Slide 3: Relevant Course Information (1/3)
	Slide 4: Relevant Course Information (2/3)
	Slide 5: Relevant Course Information (3/3)
	Slide 6: Lecture Outline (1/4)
	Slide 7: Pointers
	Slide 8: Box-and-Arrow Diagrams (1/4)
	Slide 9: Box-and-Arrow Diagrams (2/4)
	Slide 10: Box-and-Arrow Diagrams (3/4)
	Slide 11: Box-and-Arrow Diagrams (4/4)
	Slide 12: Lecture Outline (2/4)
	Slide 13: Pointer Arithmetic
	Slide 14: Pointers and Arrays
	Slide 15: At this point in the code, what values are stored in arr[]?
	Slide 16: Practice Solution (1/4)
	Slide 17: Practice Solution (2/4)
	Slide 18: Practice Solution (3/4)
	Slide 19: Practice Solution (4/4)
	Slide 20: Endianness
	Slide 21: Pointer Arithmetic Example (1/10)
	Slide 22: Pointer Arithmetic Example (2/10)
	Slide 23: Pointer Arithmetic Example (3/10)
	Slide 24: Pointer Arithmetic Example (4/10)
	Slide 25: Pointer Arithmetic Example (5/10)
	Slide 26: Pointer Arithmetic Example (6/10)
	Slide 27: Pointer Arithmetic Example (7/10)
	Slide 28: Pointer Arithmetic Example (8/10)
	Slide 29: Pointer Arithmetic Example (9/10)
	Slide 30: Pointer Arithmetic Example (10/10)
	Slide 31: Lecture Outline (3/4)
	Slide 32: C is Call-By-Value
	Slide 33: Broken Swap (1/7)
	Slide 34: Broken Swap (2/7)
	Slide 35: Broken Swap (3/7)
	Slide 36: Broken Swap (4/7)
	Slide 37: Broken Swap (5/7)
	Slide 38: Broken Swap (6/7)
	Slide 39: Broken Swap (7/7)
	Slide 40: Faking Call-By-Reference in C
	Slide 41: Fixed Swap (1/6)
	Slide 42: Fixed Swap (2/6)
	Slide 43: Fixed Swap (3/6)
	Slide 44: Fixed Swap (4/6)
	Slide 45: Fixed Swap (5/6)
	Slide 46: Fixed Swap (6/6)
	Slide 47: Output Parameters
	Slide 48
	Slide 49: Which of the following are invalid ways to invoke GenerateString()?
	Slide 50: Preferred Usage
	Slide 51: Lecture Outline (4/4)
	Slide 52: Function Pointers
	Slide 53: Function Pointer Example (1/2)
	Slide 54: Function Pointer Example (2/2)
	Slide 55: Extra Exercise #1
	Slide 56: Extra Exercise #2
	Slide 57: Extra Exercise #3
	Slide 58: Extra Exercise #4

