
CSE333, Winter 2026L02: Memory, Data, Parameters

Vote for each of CSE Linux environment, text editor, and 

Gitlab/git.

A. Done! Went (relatively) smoothly.

B. Done! Was tough to set up.

C. Still working on it.

D. Haven’t tried to set it up yet.

1

How is course setup going for you?

pollev.com/cse333a



CSE333, Winter 2026L02: Memory, Data, Parameters

Systems Programming
Memory, Data, Parameters

Instructors: 

Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

2



CSE333, Winter 2026L02: Memory, Data, Parameters

Relevant Course Information (1/2)

❖ Pre-quarter survey due Friday, 11:59 pm (Canvas)

❖ Exercise 0 was due at 11:00 am today

▪ No late days for exercises

▪ Solutions have been released

▪ Style issues Ed post will be released soon

▪ Ex 0 grades will be released before Ex 2 is due

❖ Exercise 1 due Friday morning, 11:00 am

▪ Submission via Gradescope (contact us if you don’t have access)

▪ Make sure your solution compiles & runs properly on the CSE 

Linux environment before submitting

3



CSE333, Winter 2026L02: Memory, Data, Parameters

Relevant Course Information (2/2)

❖ Starting with Exercise 2 (released Friday), all submissions 

will be done via Gitlab tagging

▪ We will submit to Gradescope from your repo for you

▪ Gitlab email sent when repos created – no action needed

• Make a private Ed post if you don’t have your repos yet

▪ Set up an SSH key and clone repos ASAP

▪ Clone your repo before section tomorrow!

4



CSE333, Winter 2026L02: Memory, Data, Parameters

C Compilation Workflow

Editor (vi) or IDE (VS Code)

Source files 
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries

LINK

5



CSE333, Winter 2026L02: Memory, Data, Parameters

Multi-file C Programs

void SumStore(int x, int y, int* dest) {
  *dest = x + y;
}

#include <stdio.h>
#include <stdlib.h>

void SumStore(int x, int y, int* dest);

int main(int argc, char** argv) {
  int z, x = 351, y = 333;
  SumStore(x, y, &z);
  printf("%d + %d = %d\n", x, y, z);
  return EXIT_SUCCESS;
}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:  

$ gcc -o sumnum sumnum.c sumstore.c
6

Note: This example has poor style for code 
split. More on multiple files in Lecture 5.



CSE333, Winter 2026L02: Memory, Data, Parameters

Compiling Multi-file Programs

❖ The linker combines multiple object files plus statically-

linked libraries to produce an executable

▪ Includes many standard libraries (e.g., libc, crt1)

• A library is just a pre-assembled collection of .o files

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g., libc)

sumnum

gcc -c

gcc -c

ld or 
gcc

7



CSE333, Winter 2026L02: Memory, Data, Parameters

A. With the standard main syntax, it is always safe to 

use argv[0]

B. Your program’s returned status code is unimportant

C. Using function declarations is beneficial to both 

single- and multi-file C programs

D. Defined error constants need to be looked up in 

function documentation, man pages, or header files 

like errno.h

E. We’re lost…
8

Which of the following statements are FALSE?

pollev.com/cse333a



CSE333, Winter 2026L02: Memory, Data, Parameters

Lecture Outline (1/3)

❖ Memory Management (351 refresher)

❖ C Data Considerations

❖ C Parameters

▪ Arrays and Pointers as Parameters

9



CSE333, Winter 2026L02: Memory, Data, Parameters

OS and Processes

❖ The OS lets you run multiple applications at once

▪ An application runs within an OS “process”

▪ The OS time slices each CPU between runnable processes

• This happens very quickly:  ~100 times per second

10

Process 1 Process 2 Process N…

operating system



CSE333, Winter 2026L02: Memory, Data, Parameters

Processes and Virtual Memory

❖ The OS gives each process the 

illusion of its own private memory

▪ Called the process’ address space

▪ Contains the process’ virtual memory, 

visible only to it (via translation)

▪ 264 bytes on a 64-bit machine

Virtual Memory

Contains code,
data, libraries,

stack, etc.

0xFF…FF

0x00…00
p

ro
ce

ss
’ a

d
d

re
ss

 s
p

ac
e

11



CSE333, Winter 2026L02: Memory, Data, Parameters

Loading

❖ When the OS loads a program it:

1) Creates an address space

2) Inspects the executable file to see 

what’s in it

3) (Lazily) copies regions of the file 

into the right place in the address 

space

4) Does any final linking, relocation, or 

other needed preparation

12

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata



CSE333, Winter 2026L02: Memory, Data, Parameters

Memory Management

❖ Local variables on the Stack

▪ Automatically-allocated and deallocated 

via calling conventions (push, pop, mov)

❖ Global and static variables in Data

▪ Statically-allocated when the process 

starts and deallocated when it exits

❖ malloc-ed data on the Heap

▪ Dynamically-allocated by process

▪ Must call free() to free, otherwise a 

memory leak

13

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Static Data

Shared Libraries

Literals

Instructions



CSE333, Winter 2026L02: Memory, Data, Parameters

Review: The Stack

❖ Used to store data associated with 

function calls

▪ Compiler-inserted code manages stack 

frames for you

❖ Stack frame (x86-64) includes:

▪ Address to return to

▪ Saved registers

• Based on calling conventions

▪ Local variables

▪ Argument build

• Only if > 6 used

14

Return Address

Saved Registers
+

Local Variables

Arguments 7+

Old %rbp

Arguments 7+

Caller
Frame

%rbp

%rsp

Callee
Frame



CSE333, Winter 2026L02: Memory, Data, Parameters

Stack in Action (1/4)

15

#include <stdlib.h>

int f(int, int);
int g(int);

int main(int argc, char** argv) {
  int n1 = f(3, -5);
  n1 = g(n1);
  return EXIT_SUCCESS;
}

int f(int p1, int p2) {
  int x;
  int a[3];
  ...
  x = g(a[2]);
  return x;
}

int g(int param) {
  return param * 2;
}

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

stack.c

main
argc, argv, n1

f
p1, p2, x, a

g
param

Note: arrow points to next instruction to 
be executed (like in gdb).



CSE333, Winter 2026L02: Memory, Data, Parameters

Stack in Action (2/4)

16

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

stack.c

main
argc, argv, n1

f
p1, p2, x, a

Note: arrow points to next instruction to 
be executed (like in gdb).

#include <stdlib.h>

int f(int, int);
int g(int);

int main(int argc, char** argv) {
  int n1 = f(3, -5);
  n1 = g(n1);
  return EXIT_SUCCESS;
}

int f(int p1, int p2) {
  int x;
  int a[3];
  ...
  x = g(a[2]);
  return x;
}

int g(int param) {
  return param * 2;
}



CSE333, Winter 2026L02: Memory, Data, Parameters

Stack in Action (3/4)

17

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

stack.c

main
argc, argv, n1

g
param

Note: arrow points to next instruction to 
be executed (like in gdb).

#include <stdlib.h>

int f(int, int);
int g(int);

int main(int argc, char** argv) {
  int n1 = f(3, -5);
  n1 = g(n1);
  return EXIT_SUCCESS;
}

int f(int p1, int p2) {
  int x;
  int a[3];
  ...
  x = g(a[2]);
  return x;
}

int g(int param) {
  return param * 2;
}



CSE333, Winter 2026L02: Memory, Data, Parameters

Stack in Action (4/4)

18

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

stack.c

main
argc, argv, n1

Note: arrow points to next instruction to 
be executed (like in gdb).

#include <stdlib.h>

int f(int, int);
int g(int);

int main(int argc, char** argv) {
  int n1 = f(3, -5);
  n1 = g(n1);
  return EXIT_SUCCESS;
}

int f(int p1, int p2) {
  int x;
  int a[3];
  ...
  x = g(a[2]);
  return x;
}

int g(int param) {
  return param * 2;
}



CSE333, Winter 2026L02: Memory, Data, Parameters

Address Space Layout Randomization 

❖ Linux uses address space layout 

randomization (ASLR) for added 

security

▪ Randomizes:

• Base of stack

• Shared library (mmap) location

▪ Makes Stack-based buffer overflow 

attacks tougher

▪ Makes debugging tougher

▪ Can be disabled (gdb does this by 

default); Google if curious

19

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata



CSE333, Winter 2026L02: Memory, Data, Parameters

Lecture Outline (2/3)

❖ Memory Management (351 refresher)

❖ C Data Considerations

❖ Parameters

20



CSE333, Winter 2026L02: Memory, Data, Parameters

C Primitive Types and Memory

❖ Integer types

▪ char, int

❖ Floating point

▪ float, double

❖ Modifiers

▪ short [int]

▪ long [int, double]

▪ signed [char, int]

▪ unsigned [char, int]

C Data Type 32-bit 64-bit printf

char 1 1 %c

short int 2 2 %hd

unsigned short int 2 2 %hu

int 4 4 %d / %i

unsigned int 4 4 %u

long int 4 8 %ld

long long int 8 8 %lld

float 4 4 %f

double 8 8 %lf

long double 12 16 %Lf

pointer 4 8 %p

21

Do not memorize, these aren’t strict sizes!



CSE333, Winter 2026L02: Memory, Data, Parameters

C99 Extended Integer Types

❖ Solves the conundrum of “how big is an long int?”

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {
  int8_t a;  // exactly 8 bits, signed
  int16_t b;  // exactly 16 bits, signed
  int32_t c;  // exactly 32 bits, signed
  int64_t d;  // exactly 64 bits, signed
  uint8_t w;  // exactly 8 bits, unsigned
  ...
}

STYLE
TIP

22



CSE333, Winter 2026L02: Memory, Data, Parameters

Arrays

❖ Definition:  type name[size]  allocates 

size*sizeof(type) bytes of contiguous memory

▪ By default, array values are “mystery” data (i.e., uninitialized)

▪ Normal usage is a compile-time constant for size

e.g., int scores[175];

❖ Size of an array

▪ Not stored anywhere – array does not know its own size!

• sizeof(array) only works in the variable scope of array definition

▪ Recent versions of C (but not C++) allow for variable-length arrays

• Uncommon and can be considered bad practice [we won’t use]

23

int n = 175;
int scores[n];  // OK in C99

type name[size]



CSE333, Winter 2026L02: Memory, Data, Parameters

Using Arrays

❖ Initialization: type name[size] = {val0,…,valN};

▪ {} initialization can only be used at time of definition

▪ If no size supplied, infers from length of array initializer

❖ Array name used as identifier for “collection of data”

▪ Array name produces the address of the start of the array

• Cannot be assigned to / changed

▪ name[index] specifies an element of the array and can be 

used as an assignment target or as a value in an expression

• Is actually *(name+index) with pointer arithmetic (Lecture 3)

24

int primes[6] = {2, 3, 5, 6, 11, 13};
primes[3] = 7;
primes[100] = 0;  // memory smash!

type name[size] = {val0,…,valN};



CSE333, Winter 2026L02: Memory, Data, Parameters

Multi-dimensional Arrays

❖ Generic 2D format:  
type name[rows][cols] = {{values},…,{values}};

▪ Still allocates a single, contiguous chunk of memory

▪ C is row-major

▪ 2-D arrays normally only useful if size known in advance;  

otherwise, use dynamically-allocated data

25

// a 2-row, 3-column array of doubles
double grid[2][3];

// a 3-row, 5-column array of ints
int matrix[3][5] = {
  {0, 1, 2, 3, 4},
  {0, 2, 4, 6, 8},
  {1, 3, 5, 7, 9}
};



CSE333, Winter 2026L02: Memory, Data, Parameters

Structs

❖ The size and layout of a struct instance is completely 

determined by (1) the field ordering and (2) alignment 

requirements

▪ Can review 351 if curious

❖ In practical terms, wouldn’t solve for these by hand; use 

built-in C functionality instead:

▪ sizeof(type) returns the size in bytes

▪ offsetof(type, field) returns offset value in bytes

• Defined in stddef.h

❖ We’ll talk more about struct usage in Lecture 4

26



CSE333, Winter 2026L02: Memory, Data, Parameters

Lecture Outline (3/3)

❖ Memory Management (351 refresher)

❖ C Data Considerations

❖ Parameters

27



CSE333, Winter 2026L02: Memory, Data, Parameters

Parameters: Reference vs. Value

❖ There are two fundamental parameter-passing schemes in 

programming languages

❖ Call-by-value

▪ Parameter is a local variable initialized with a copy of the calling 

argument when the function is called; manipulating the 

parameter only changes the copy, not the calling argument

▪ C, Java, C++ (most things)

❖ Call-by-reference

▪ Parameter is an alias for the supplied argument; manipulating the 

parameter manipulates the calling argument

▪ C++ references (we’ll see these later)

28



CSE333, Winter 2026L02: Memory, Data, Parameters

Arrays as Parameters

❖ It’s tricky to use arrays as parameters

▪ What happens when you use an array name as an argument?

▪ Arrays do not know their own size

29

int SumAll(int a[]);  // prototype

int main(int argc, char** argv) {
  int numbers[] = {9, 8, 1, 9, 5};
  int sum = SumAll(numbers);
  return 0;
}

int SumAll(int a[]) {
  int i, sum = 0;
  for (i = 0; i < ...???
}



CSE333, Winter 2026L02: Memory, Data, Parameters

Solution 1: Declare Array Size

❖ Problem:  loss of generality/flexibility

30

int SumAll(int a[5]);  // prototype

int main(int argc, char** argv) {
  int numbers[] = {9, 8, 1, 9, 5};
  int sum = SumAll(numbers);
  printf("sum is: %d\n", sum);
  return 0;
}

int SumAll(int a[5]) {
  int i, sum = 0;
  for (i = 0; i < 5; i++) {
    sum += a[i];
  }
  return sum;
}



CSE333, Winter 2026L02: Memory, Data, Parameters

Solution 2: Pass Size as Parameter

31

int SumAll(int a[], int size);  // prototype

int main(int argc, char** argv) {
  int numbers[] = {9, 8, 1, 9, 5};
  int sum = SumAll(numbers, 5);
  printf("sum is: %d\n", sum);
  return 0;
}

int SumAll(int a[], int size) {
  int i, sum = 0;
  for (i = 0; i < size; i++) {
    sum += a[i];
  }
  return sum;
}

arraysum.c

❖ Standard idiom in C programs!



CSE333, Winter 2026L02: Memory, Data, Parameters

Arrays: Call-by-what?

❖ Technical answer: a T[] array parameter is “promoted” 

to a pointer of type T*, and the pointer is passed by value

▪ So it acts like a call-by-reference array – caller’s array can be 

changed if callee modifies the array parameter elements

▪ But it’s really a call-by-value pointer – the callee’s pointer 

parameter can be changed without affecting the caller’s array

• This is because T[i] is really *(T+i) . We aren’t changing T!

32

void CopyArray(int src[], int dst[], int size) {
  int i;
  dst = src;  // doesn't copy the array, copies the address
  for (i = 0; i < size; i++) {
    dst[i] = src[i];  // copies source array to itself
  }
}



CSE333, Winter 2026L02: Memory, Data, Parameters

Array Parameters

❖ Array parameters are actually passed as pointers to the 

first array element

▪ The [] syntax for parameter types is just for convenience

• Use whichever best helps the reader

33

void f(int a[]);

int main( ... ) {
  int a[5];
  ...
  f(a);
  return EXIT_SUCCESS;
}

void f(int a[]) {

This code:

void f(int* a);

int main( ... ) {
  int a[5];
  ...
  f(&a[0]);
  return EXIT_SUCCESS;
}

void f(int* a) {

Equivalent to:

STYLE
TIP



CSE333, Winter 2026L02: Memory, Data, Parameters

Returning an Array

❖ Local variables, including arrays, are allocated on the 

Stack

▪ They “disappear” when a function returns!

▪ Can’t safely return local arrays from functions

• Can’t return an array as a return value – why not?

34

int* CopyArray(int src[], int size) {
  int i, dst[size];   // OK in C99

  for (i = 0; i < size; i++) {
    dst[i] = src[i];
  }

  return dst;  // no compiler error, but wrong!
}

buggy_copyarray.c



CSE333, Winter 2026L02: Memory, Data, Parameters

Solution: Output Parameter

❖ Create the “returned” array in the caller

▪ Pass it as an output parameter to CopyArray()

• A pointer parameter that allows the called function to store values 

that the caller can use

▪ Works because arrays are “passed” as pointers

35

void CopyArray(int src[], int dst[], int size) {
  int i;

  for (i = 0; i < size; i++) {
    dst[i] = src[i];
  }
}

copyarray.c



CSE333, Winter 2026L02: Memory, Data, Parameters

Array Memory Diagram (1/3)

36

int main(){
  int original[] = {123, 351, 333};
  int copy[3];
  CopyArray(original, copy, 3); 
}

void CopyArray(int src[], int dst[], int size) {
  for (int i = 0; i < size; i++) {
    dst[i] = src[i];
  }
}

main()

original copy

123 351 333 ??? ??? ???



CSE333, Winter 2026L02: Memory, Data, Parameters

Array Memory Diagram (2/3)

37

int main(){
  int original[] = {123, 351, 333};
  int copy[3];
  CopyArray(original, copy, 3); 
}

void CopyArray(int src[], int dst[], int size) {
  for (int i = 0; i < size; i++) {
    dst[i] = src[i];
  }
}

main()

CopyArray()

original copy

123 351 333 ??? ??? ???

src dstsize 3

dst[i] is really 
*(dst+i) . We 
aren’t changing dst!



CSE333, Winter 2026L02: Memory, Data, Parameters

Array Memory Diagram (3/3)

38

int main(){
  int original[] = {123, 351, 333};
  int copy[3];
  CopyArray(original, copy, 3); 
}

void CopyArray(int src[], int dst[], int size) {
  for (int i = 0; i < size; i++) {
    dst[i] = src[i];
  }
}

main()

CopyArray()

original copy

123 351 333 123 351 333

src dstsize 3

dst[i] is really 
*(dst+i) . We 
aren’t changing dst!



CSE333, Winter 2026L02: Memory, Data, Parameters

Output Parameters

❖ Output parameters are common in library functions

▪ long int strtol(char* str, char** endptr, 

                int base);

▪ int sscanf(char* str, char* format, ...);

39

int   num, i;
char* p_end, str1 = "333 rocks";
char  str2[10];

// converts "333 rocks" into long – p_end is conversion end
num = (int) strtol(str1, &p_end, 10);

// reads string into arguments based on format string
num = sscanf("3 blind mice", "%d %s", &i, str2);

outparam.c



CSE333, Winter 2026L02: Memory, Data, Parameters

Extra Exercises

❖ Some lectures contain “Extra Exercise” slides

▪ Extra practice for you to do on your own without the pressure of 

being graded

▪ You may use libraries and helper functions as needed

• Early ones may require reviewing 351 material or looking at 

documentation for things we haven’t discussed in 333 yet

▪ Always good to provide test cases in main()

❖ Solutions for these exercises will be posted on the course 

website

▪ You will get the most benefit from implementing your own 

solution before looking at the provided one

40



CSE333, Winter 2026L02: Memory, Data, Parameters

Extra Exercise #1

❖ Write a function that:

▪ Accepts an array of 32-bit unsigned integers and a length

▪ Reverses the elements of the array in place

▪ Returns nothing (void)

41



CSE333, Winter 2026L02: Memory, Data, Parameters

Extra Exercise #2

❖ Write a function that:

▪ Accepts a string as a parameter

▪ Returns:

• The first white-space separated word in the string as a newly-

allocated string

• AND the size of that word

▪ (will need to either wait for Lecture 4 or review malloc/free on 

your own)

42


	Slide 1: How is course setup going for you?
	Slide 2: Systems Programming Memory, Data, Parameters
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: C Compilation Workflow
	Slide 6: Multi-file C Programs
	Slide 7: Compiling Multi-file Programs
	Slide 8: Which of the following statements are FALSE?
	Slide 9: Lecture Outline (1/3)
	Slide 10: OS and Processes
	Slide 11: Processes and Virtual Memory
	Slide 12: Loading
	Slide 13: Memory Management
	Slide 14: Review: The Stack
	Slide 15: Stack in Action (1/4)
	Slide 16: Stack in Action (2/4)
	Slide 17: Stack in Action (3/4)
	Slide 18: Stack in Action (4/4)
	Slide 19: Address Space Layout Randomization 
	Slide 20: Lecture Outline (2/3)
	Slide 21: C Primitive Types and Memory
	Slide 22: C99 Extended Integer Types
	Slide 23: Arrays
	Slide 24: Using Arrays
	Slide 25: Multi-dimensional Arrays
	Slide 26: Structs
	Slide 27: Lecture Outline (3/3)
	Slide 28: Parameters: Reference vs. Value
	Slide 29: Arrays as Parameters
	Slide 30: Solution 1: Declare Array Size
	Slide 31: Solution 2: Pass Size as Parameter
	Slide 32: Arrays: Call-by-what?
	Slide 33: Array Parameters
	Slide 34: Returning an Array
	Slide 35: Solution: Output Parameter
	Slide 36: Array Memory Diagram (1/3)
	Slide 37: Array Memory Diagram (2/3)
	Slide 38: Array Memory Diagram (3/3)
	Slide 39: Output Parameters
	Slide 40: Extra Exercises
	Slide 41: Extra Exercise #1
	Slide 42: Extra Exercise #2

