W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

How is course setup going for you?

Vote for each of CSE Linux environment, text editor, and
Gitlab/git.

A.

B. Done! Was tough to set up.
C. Still working on it.
D

Haven’t tried to set it up yet.

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

CSE333, Winter 2026

Systems Programming

Memory, Data, Parameters

Instructors:

Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister

Violet Monserate

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Relevant Course Information (1/2)

- Pre-quarter survey due Friday, 11:59 pm (Canvas)

» Exercise O was due at 11:00 am today
" No late days for exercises
= Solutions have been released
= Style issues Ed post will be released soon

= Ex 0 grades will be released before Ex 2 is due

» Exercise 1 due Friday morning, 11:00 am
= Submission via Gradescope (contact us if you don’t have access)

"= Make sure your solution compiles & runs properly on the CSE
Linux environment before submitting

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Relevant Course Information (2/2)

+ Starting with Exercise 2 (released Friday), all submissions
will be done via Gitlab tagging
= We will submit to Gradescope from your repo for you

= Gitlab email sent when repos created — no action needed

- Make a private Ed post if you don’t have your repos yet

Set up an SSH key and clone repos ASAP

" Clone your repo before section tomorrow!

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

C Compilation Workflow

Editor (vi) or IDE (VS Code)

‘*\/pe in ‘kx," (e
edh, ond save

— T”COMPILE” (compile + assemble)

— N ——— —
Statically-linked [3b7 . 2] |[foo.o] [bar.o] Object files (. 0)
ran libraries LIN.K\j —— EI\I ——————
Makefile |
Shared Iibraries[l‘ibc.so] [2T] C&Q‘dab\f)

Test oudpudt, bar (vocess) ¢
GOB, walgrird, eft.] b N
EXECUTE, DEBUG, ...
—_

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

o go Note: This example has poor style for code
M U Itl'fl Ie c PrOgra ms split. More on multiple files in Lecture 5.
Csource file1| void SumStore(int x, int y, intx dest) {<—defin
(sumstore.c) *dest = x + y; heve
}
@ ™

Csourcefile2 [#include <stdio.h>
(sumnum.c)| #1nclude <stdlib.h>

void SumStore(int x, int y, intx dest); é declaced

here
int main(int argc, charx* argv) {
int z, x = 351, y = 333;
SumStore(x, y, &z)j; € wed here
printf("%d + %d = %d\n", x, y, z);
return EXIT_SUCCESS;
J g
béthFles indud=l Juring campilation

Compile together:
$ gcc -0 sumnum sumnum.c sumstore.c

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Compiling Multi-file Programs

+ The linker combines multiple object files plus statically-
linked libraries to produce an executable

" |ncludes many standard libraries (e.g., Libc, crtl)

- Alibrary is just a pre-assembled collection of . o files

cCC —-C
[sumstore.c] & >[sumstore.o
sumnum]
[] gcc —c{
sumnum. C | sumnum. o
rir\\’ﬁ\l«;@l‘
3 et 7y libraries
s (e.g., Libc)

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

0 PO" EveryWheI‘e pollev.com/cse333a

Which of the following statements are FALSE?

A.
A’_\\J\\\ be’l’ke Nam e cp"H\e. &«d&kle

(B. Your program’s returned status code is unimportant/

C. Using function declarations is beneficial to both

° . ° gt ‘ : ‘F‘t’"b“ devina cc{md'%n
single- and multi-file C programs =3 ik chors e

D. Defined error constants need to be looked up in
function documentation, man pages, or header files
like errno.h

E. We’'re lost...

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Lecture Outline (1/3)

+» Memory Management (351 refresher)
+» C Data Considerations

<« C Parameters

= Arrays and Pointers as Parameters

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

OS and Processes

+» The OS lets you run multiple applications at once
" An application runs within an OS “process”

" The OS time slices each CPU between runnable processes

- This happens very quickly: ~100 times per second cortext
S \+ct\\\"j

Process 1 Process 2 Process N

operating system

10

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Processes and Virtual Memory

: OxFF..FF | Virtual Memor
+» The OS gives each process the A Y
illusion of its own private memory
= Called the process’ address space
" Contains the process’ virtual memory, S
visible only to it (via translation) §
= 2% pytes on a 64-bit machine £ Contains code,
© data, libraries,
> stack, etc.
S
(@]
S
\4
0x00...00

11

W UNIVERSITY of WASHINGTON

CSE333, Winter 2026

Loading

+» When the OS loads a program it:

1)
2)

3)

4)

Creates an address space
Inspects the executable file to see
what’s in it

(Lazily) copies regions of the file
into the right place in the address
space

Does any final linking, relocation, or
other needed preparation

s fatically— linked
‘]bmr:es ('7\’ Lih\‘e\")

LO2: Memory, Data, Parameters

d MMT(O\"\/" ink

librgries Qoy Loao\ev)

Dof(\;&
Co e

0x00...00

Stack

} 57

1

Shared Libraries

foes

Heap

Read/Write Segment
.data, .bss fived

\n

Sizle

ﬁ

Read-Only Segment

.text, .rodata
ixed T

12

sige.

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Memory Management

« Local variables on the Stack

= Automatically-allocated and deallocate% e = Stack
via calling conventions (push, pop, mov) l
+ Global and static variables in Data 1

Shared Libraries

= Statically-allocated when the process

starts and deallocated when it exits 1
+» malloc-ed data on the Heap Heap
= Dynamically-allocated by process Static Data
. \\D+ h
= Must call free() to free, otherwisea Literals

memory leak Instructions

0x00...00

13

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Review: The Stack

p
+» Used to store data associated with
function calls Caller,
= Compiler-inserted code manages stack Frame
frames for you
Arguments 7+
‘ \
. Return Address
+ Stack frame (x86-64) includes: %rbp —
Old %rbp
= Address to return to
" Saved registers Calle Saved Registers
- Based on calling conventions Frame< *
_ Local Variables
= Local variables
= Argument build
- Only if > 6 used Arguments 7+
\ %rsp

14

WA UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

Note: arrow points to next instruction to
StaCk in Action (1/4) be executed (like in gdb).
stack.c
(#include <stdlib.h>)

int f(int, int);
int g(int);

=P | int main(int argc, char*x argv) {
o int n1 = f(3, -5);

nl = g(nl);

return EXIT_SUCCESS;

¥

=P | int f(int pl, int p2) {

int x;

int a[3];

=»> | x = gal2]);
return Xx;

}

int g(int param) {
return param * 2;

U y

A/

15

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

Note: arrow points to next instruction to
StaCk in Action (2/4) be executed (like in gdb).
stack.c
(#include <stdlib.h>)

int f(int, int);
int g(int);

int main(int argc, char*xx argv) {
int n1 = f(3, -5);
nl = g(nl);
return EXIT_SUCCESS;

¥

int f(int pl, int p2) {
int x;
int a[3];

x = g(al2]);
o return x;
¥

int g(int param) {
return param x 2;

U y

16

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

Note: arrow points to next instruction to
StaCk in Action (3/4) be executed (like in gdb).
stack.c
(#include <stdlib.h>)

int f(int, int);
int g(int);

int main(int argc, char*xx argv) {
int n1 = f(3, -5);

— nl = g(nl);
return EXIT_SUCCESS;

¥

int f(int pl, int p2) {
int x;
int a[3];

x = g(al2]);
return Xx;

}

int g(int param) {
return param x 2;

U y

A/

17

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Note: arrow points to next instruction to

StaCk in ACtion (4/4) be executed (like in gdb).

stack.c

e <siellBalhs) _

int f(int, int); Stack
int g(int);

main
argc, argy, nl

int main(int argc, charxx argv) {
int nl1 = f(3, -5);

nl = g(nl);
o return EXIT_SUCCESS;

k;

int f(int pl, int p2) { 1
int x; Hea
int a[3]; P
e Read/Write Segment
x = g(a[2]); .data, .bss
return x;

} Read-Only Segment

.text, .rodata

int g(int param) {
return param x 2;

¢

18

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Address Space Layout Randomization

OxFF...FF
- Linux uses address space layout >_

randomization (ASLR) for added

security

= Randomizes:

- Base of stack

- Shared library (mmap) location -——/

= Makes Stack-based buffer overflow
attacks tougher [(,

" Makes debugging tougher !!

Y a

= Can be disabled (gdb does this by
default); Google if curious

Shared Libraries

1

Heap

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

0x00...00

19

WA UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Lecture Outline (2/3)

+» Memory Management (351 refresher)
+» C Data Considerations

<« Parameters

CSE333, Winter 2026

20

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

C Primitive Types and Memory

Do not memorize, these aren’+ strict sizes!

C Data Type 32-bit 64-bit printf

« Integer types

" char, int char 1 1 %C
short 1int 2 2 %hd
unsigned short int| 2 2 %hu

+ Floating point int| 4 2| %d /%
» float. double unsigned int| 4 4 %u
’ long int| 4 8 %1d

long long int| 8 8 %11d

+~ Modifiers float| 4 4 %f

= short [int] double | 8 8 % 1T

. long double | 12 16 %L T
= Long [int, double] pointer | 4 3 %D

= signed [char, int]

"= unsigned [char, int]

21

W UNIVERSITY of WASHINGTON

LO2: Memory, Data, Parameters

C99 Extended Integer Types

CSE333, Winter 2026

'=I-F|:|

—
"\v’n

+ Solves the conundrum of “how bigisan Long 1nt?”

int8_t a;
intle_t b;
int32_t c;

int6d_t d;

uint8_t w;

}

\.

void foo(void) {

/]
/]
/]
/]
/]

p
#include <stdint.h> € types defined here

exactly 8 bits, signed

exactly 16 bits, signed
exactly 32 bits, signed
exactly bits, signed
exactly 8 bits, unsigned

N

‘F]ne ‘FOr generic C/ cde

void sumstore(int x, int y, int*x dest) {

heeAeB ‘K’r .S\/_s'l'?/v\ CoAC - useé aompno\{‘c‘y 1

vo1d sumstore(int32_t x, int32_t y, int32_t* dest) {

<
-
m

22

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Arrays

+ Definition: [type name[size]] allocates
sizexsizeof (type) bytes of contiguous memory

= By default, array values are “mystery” data (i.e., uninitialized)

" Normal usage is a compile-time constant for s1ze
e.g., int scores[175];

+ Size of an array

= Not stored anywhere — array does not know its own size!
- sizeof (array) only works in the variable scope of array definition
= Recent versions of C (but not C++) allow for variable-length arrays
- Uncommon and can be considered bad practice [we won’t use]

int n = 175;
int scores[n]; // OK in C99

23

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Using Arrays OPJ(.TM\ nen ieitializing

R Initialization:[type name[si;e] = {val@,...,valN};]

= {} initialization can only be used at time of definition

" |If no size supplied, infers from length of array initializer

+ Array name used as identifier for “collection of data”
ﬁ Array name produces the address of the start of the array
- Cannot be assigned to / changed

" name[1ndex] specifies an element of the array and can be
used as an assignment target or as a value in an expression

. N o
Is actually * (name J_pgge)é)ﬁxygch pointer arithmetic (Lecture 3)

v
int primes[6] = {2, 3, 5, 6, 11, 13};
primes[3] = 7;
primes[100] = 0; // memory smash! (hope &3ﬁmﬁ)

24

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Multi-dimensional Arrays

+» @Generic 2D format:
type name[rows][cols] = {{values},..,{values}};

= Still allocates a single, contiguous chunk of memory

" Cisrow-major
(

// a 2-row, 3-column array of doubles
double grid[2][3];

// a 3-row, 5-column array of ints
int matrix[3][5] = {

{09 l’ 2’ 3) 4})

{09 2’ 4’ 69 8})

{1, 3, 5, 7, 9}

\};
= 2-D arrays normally only useful if size known in advance;

otherwise, use dynamically-allocated data

J

25

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

CSE333, Winter 2026

Structs

+» The size and layout of a struct instance is completely

determined by (1) the field ordering and (2) alignment
requirements

= Can review 351 if curious

» In practical terms, wouldn’t solve for these by hand; use
built-in C functionality instead:

= sizeof (type) returnsthe size in bytes

= offsetof (type, field) returns offsetvaluein bytes
- Defined in stddef.h

+» We’ll talk more about struct usage in Lecture 4

26

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

Lecture Outline (3/3)

%+ Memory Management (351 refresher)
% C Data Considerations

<~ Parameters

27

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Parameters: Reference vs. Value

+» There are two fundamental parameter-passing schemes in
programming languages

+ Call-by-value /" Pass-by-value "

= Parameter is a local variable initialized with a copy of the calling
argument when the function is called; manipulating the
parameterl_(_)nly changes the copy\ not the calling argument

= C, Java, C++ (most things)

N /1
» Call-by-reference / " Pass - by~ reference

= Parameter is an alias for the supplied argument; manipulating the
parameterEnanipuIates the calling argumenﬂ_

—_—

= C++ references (we’ll see these later)

28

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Arrays as Parameters

+ It's tricky to use arrays as parameters

" What happens when you use an array name as an argument?

iMcess of stort
" Arrays do not know their own size o (eéi awoo/r/

4)

int SumAll(int al[]); // prototype

int main(int argc, char*x argv) {
int numbers[] = {9, 8, 1, 9, 5};
int sum = SumAll(numbers);
return 0;

}

int SumAll(int a[]) {
int i, sum = 0;
for (i = 0; 7 < «+e222

\} J

29

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Solution 1: Declare Array Size

/}nt SumAll(int a[5]); // prototype N

int main(int argc, charxx argv) {
int numbers[] = {9, 8, 1, 9, 5};
int sum = SumAll(numbers);
("sum 1is: %d\n", sum);
return 0;

}

int SumAll(int a[5]) {
int i, sum = 0;
for (i = 0; i < 5; 1i++) {
sum += al[i];
}

return sum;

\}

+ Problem: loss of generality/flexibility

30

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Solution 2: Pass Size as Parameter

/}nt SumAll(int a[], int size); // prototype N

int main(int argc, charxx argv) {
int numbers[] = {9, 8, 1, 5};
int sum = SumAII(numbers,(%},
("sum 1is: %d\n", sum);
return 0;

}

int SumAll(int a[], int size) {
int i, sum = 0;
for (i = 0; i < size; i++) {
sum += al[i];
}

return sum;

\}

arraysum.c

+» Standard idiom in C programs!

31

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Arrays: Call-by-what?

+» Technical answer: a T | | array parameter is “promoted”
to a pointer of type T*, and the pointer is passed by value

= So it acts like a call-by-reference array — caller’s array can be
changed if callee modifies the array parameter elements

= But it’s really a call-by-value pointer — the callee’s pointer
parameter can be changed without affecting the caller’s array

 Thisis because T[1] isreally *x(T+17) . We aren’t changing T!

(void CopyArray(int src[], int dst[], int size) { R
int 1;
dst = srcy // doesn't copy the array, copies the address
for (i = 0; 1 < size; 1i++) {
dst[i] = src[i]; // copies source array to itself
k;
\} J

32

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

]

élﬁj
=
3!

—
"\v’n

Array Parameters

+» Array parameters are actually passed as pointers to the
first array element

= The [] syntax for parameter types is just for convenience
’k Use whichever best helps the reader <

This code: Equivalent to:
(void f(int a[a; h (void f(int* a); h
pointer
int main(...) { int main(...) {
int a[5]; int a[5];
e o o awa\/ e o o
f(a); f(&a[0]);
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }
\void f(int al[]) {) kv0'id f(intx a) {)

33

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Returning an Array

+ Local variables, including arrays, are allocated on the
Stack

" They “disappear” when a function returns!

= Can’t safely return local arrays from functions

, Y‘C’hur\ S MMrQSS
- Can’t return an array as a return value — why not? hos o F4 1 % rax

(}nt* CopyArray(int src[], int size) {)
int 1, dst[size]; // OK in C99

for (1

= 0; 1 < size; i++) {
dst[i] =

srcli];

— returns address o stact of local aray on Stick
return Q§E} // no compiler error, but wrong!

J J
buggy_copyanayx:

}

34

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Solution: Output Parameter

Create the “returned” array in the caller

" Pass it as an output parameter to CopyArray ()

- A pointer parameter that allows the called function to store values
that the caller can use

= Works because arrays are “passed” as pointers

-
A
AT

N

N

void CopyArray(int src[], int dstrl, int size) {

int i
’ Lo«ﬁ al Paro.me:"er
\gwﬂu “pasy dda P caler

for (i = 0; i < size; 1i++) {
dst[i] = src[i];
¥ ,C/o\(i\'« stored. by deve'(:es(ewcf\rtﬁ povATer
\})
copyarray.c

35

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Array Memory Diagram (1/3)

main()
original copy

123 | 351 333 ??? ??? ???

/;nt main(){
int originall[] = {123, 351, 333};
int copyl[3];
CopyArray(original, copy, 3);
¥

void CopyArray(int src[], int dst[], int size) {
for (int 1 = 03 1 < size; i++) {
dst[i] = src[i];
+

\J

J

CSE333, Winter 2026

36

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Array Memory Diagram (2/3)

main()
original copy
/ 123 351 333 /' ??7? ??7? ?7?7?
(CopyArray()
\irc/ size |3 dst
/;nt main(){)

int original[] = {123, 351, 333}; dst[i] isreally
int copy[3]; *x(dst+1) . We

CopyArray(original, copy, 3); aren’t changing dst!

}

void CopyArray(int src[], int dst[], int size) {
for (int 1 = 03 1 < size; i++) {
dst[i] = src[i];
+

\J J

37

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Array Memory Diagram (3/3)

main()
original copy
/v123 351 333 /W 123 351 333
(CopyArray()
\irc/ size |3 dst
/;nt main(){)

int original[] = {123, 351, 333}; dst[i] isreally
int copy[3]; *x(dst+1) . We

CopyArray(original, copy, 3); aren’t changing dst!

}

void CopyArray(int src[], int dst[], int size) {
for (int 1 = 03 1 < size; i++) {
dst[i] = src[i];
+

\J J

38

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

CSE333, Winter 2026

Output Parameters

+» Output parameters are common in library functions

= long int strtol(charx str, char**

int base); oudput paramelecs
= int sscanf(char* str, charx format,®);

(}nt num, 1; A
charx p_end, strl = "333 rocks";
char str2[10];

éé converts "333 rocks'" into long - p_end i1s conversion end
am = (int) strtol(strl, &p_end, 10);
\\re_'\wrr_s” Mﬂ\ " ZLQO\\/S!

// reads string into arguments bfised ®n format string
Knum = sscanf ("3 blind mice", "&d ", R, sﬂtrz);

\//_
outparam.c stores dadta

Covresprnding o P\'ﬁ’ pacam §

39

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Extra Exercises

+» Some lectures contain “Extra Exercise” slides

= Extra practice for you to do on your own without the pressure of
being graded

"= You may use libraries and helper functions as needed

- Early ones may require reviewing 351 material or looking at
documentation for things we haven’t discussed in 333 yet

= Always good to provide test casesin main ()

+ Solutions for these exercises will be posted on the course
website

" You will get the most benefit from implementing your own
solution before looking at the provided one

40

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Extra Exercise #1

+~ Write a function that:
= Accepts an array of 32-bit unsigned integers and a length
= Reverses the elements of the array in place

= Returns nothing (void)

41

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Extra Exercise #2

« Write a function that:
= Accepts a string as a parameter

® Returns:

- The first white-space separated word in the string as a newly-
allocated string

« AND the size of that word

= (will need to either wait for Lecture 4 or review malloc/free on
your own)

42

	Slide 1: How is course setup going for you?
	Slide 2: Systems Programming Memory, Data, Parameters
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: C Compilation Workflow
	Slide 6: Multi-file C Programs
	Slide 7: Compiling Multi-file Programs
	Slide 8: Which of the following statements are FALSE?
	Slide 9: Lecture Outline (1/3)
	Slide 10: OS and Processes
	Slide 11: Processes and Virtual Memory
	Slide 12: Loading
	Slide 13: Memory Management
	Slide 14: Review: The Stack
	Slide 15: Stack in Action (1/4)
	Slide 16: Stack in Action (2/4)
	Slide 17: Stack in Action (3/4)
	Slide 18: Stack in Action (4/4)
	Slide 19: Address Space Layout Randomization
	Slide 20: Lecture Outline (2/3)
	Slide 21: C Primitive Types and Memory
	Slide 22: C99 Extended Integer Types
	Slide 23: Arrays
	Slide 24: Using Arrays
	Slide 25: Multi-dimensional Arrays
	Slide 26: Structs
	Slide 27: Lecture Outline (3/3)
	Slide 28: Parameters: Reference vs. Value
	Slide 29: Arrays as Parameters
	Slide 30: Solution 1: Declare Array Size
	Slide 31: Solution 2: Pass Size as Parameter
	Slide 32: Arrays: Call-by-what?
	Slide 33: Array Parameters
	Slide 34: Returning an Array
	Slide 35: Solution: Output Parameter
	Slide 36: Array Memory Diagram (1/3)
	Slide 37: Array Memory Diagram (2/3)
	Slide 38: Array Memory Diagram (3/3)
	Slide 39: Output Parameters
	Slide 40: Extra Exercises
	Slide 41: Extra Exercise #1
	Slide 42: Extra Exercise #2

