W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

0 PO" EVGI‘YWheI‘e pollev.com/cse333a

How is course setup going for you?

Vote for each of CSE Linux environment, text editor, and
Gitlab/git.

A.

B. Done! Was tough to set up.
C. Still working on it.
D

Haven’t tried to set it up yet.

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

CSE333, Winter 2026

Systems Programming

Memory, Data, Parameters

Instructors:

Amber Hu Justin Hsia

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister

Violet Monserate

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Relevant Course Information (1/2)

- Pre-quarter survey due Friday, 11:59 pm (Canvas)

» Exercise O was due at 11:00 am today
" No late days for exercises
= Solutions have been released
= Style issues Ed post will be released soon

= Ex 0 grades will be released before Ex 2 is due

» Exercise 1 due Friday morning, 11:00 am
= Submission via Gradescope (contact us if you don’t have access)

"= Make sure your solution compiles & runs properly on the CSE
Linux environment before submitting

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Relevant Course Information (2/2)

+ Starting with Exercise 2 (released Friday), all submissions
will be done via Gitlab tagging
= We will submit to Gradescope from your repo for you

= Gitlab email sent when repos created — no action needed

- Make a private Ed post if you don’t have your repos yet

Set up an SSH key and clone repos ASAP

" Clone your repo before section tomorrow!

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

C Compilation Workflow

Editor (vi) or IDE (VS Code)

Statically-linked [b7 . 2

libraries
LINK\ LINK

Shared libraries [libc.so

EXECUTE, DEBUG, ...

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

o go Note: This example has poor style for code
M u Itl-fl Ie c Progra mS split. More on multiple files in Lecture 5.
Csource file1| void SumStore(int x, int y, int* dest) {
(sumstore.c) *dest = x + y;
}
4)

Csourcefile2 [#include <stdio.h>
(sumnum.c)| #1nclude <stdlib.h>

void SumStore(int x, int y, intx dest);

int main(int argc, char*xx argv) {
int z, x = 351, y = 333;
SumStore(x, y, &z);
printf("%d + %d = %d\n", x, y, z);
return EXIT_SUCCESS;

J Y
Compile together:

S gcc —O0 sumnum sumnum.cC sumstore.c

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Compiling Multi-file Programs

+ The linker combines multiple object files plus statically-
linked libraries to produce an executable

" |ncludes many standard libraries (e.g., Libc, crtl)

- Alibrary is just a pre-assembled collection of . o files

cCC —-C
[sumstore.c] & >[sumstore.o

1d or

gcC sumnum]

sumnum. o

] gcc —c{

[sumnum.cC J

libraries
(e.g., Libc)

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

0 PO" EveryWheI‘e pollev.com/cse333a

Which of the following statements are FALSE?
A.

B. Your program’s returned status code is unimportant

C. Using function declarations is beneficial to both
single- and multi-file C programs

D. Defined error constants need to be looked up in
function documentation, man pages, or header files
like errno.h

E. We’'re lost...

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Lecture Outline (1/3)

+» Memory Management (351 refresher)
+» C Data Considerations

<« C Parameters

= Arrays and Pointers as Parameters

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

OS and Processes

+» The OS lets you run multiple applications at once
" An application runs within an OS “process”

" The OS time slices each CPU between runnable processes
- This happens very quickly: ~100 times per second

Process 1 Process 2 Process N

operating system

10

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Processes and Virtual Memory

: OxFF..FF | Virtual Memor
+» The OS gives each process the A Y
illusion of its own private memory
= Called the process’ address space
" Contains the process’ virtual memory, S
visible only to it (via translation) §
= 2% pytes on a 64-bit machine £ Contains code,
© data, libraries,
> stack, etc.
S
(@]
S
\4
0x00...00

11

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Loading

+» When the OS loads a program it:

Stack
1) Creates an address space l

2) Inspects the executable file to see
what’s in it 1
Shared Libraries

3) (Lazily) copies regions of the file

into the right place in the address 1
Space Heap
Read/Write Segment

4) Does any final linking, relocation, or
other needed preparation

.data, .bss

Read-Only Segment
.text, .rodata

0x00...00

12

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Memory Management

« Local variables on the Stack

= Automatically-allocated and deallocated Stack
via calling conventions (push, pop, mov) l
+ Global and static variables in Data 1

= Statically-allocated when the process Shared Libraries

starts and deallocated when it exits 1
+» malloc-ed data on the Heap Heap
= Dynamically-allocated by process Static Data
" Must call free() to free, otherwise a Literals

memory leak Instructions

0x00...00

13

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Review: The Stack

p
+» Used to store data associated with
function calls Caller,
= Compiler-inserted code manages stack Frame
frames for you
Arguments 7+
‘ \
. Return Address
+ Stack frame (x86-64) includes: %rbp —
Old %rbp
= Address to return to
" Saved registers Calle Saved Registers
- Based on calling conventions Frame< *
_ Local Variables
= Local variables
= Argument build
- Only if > 6 used Arguments 7+
\ %rsp

14

WA UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

Note: arrow points to next instruction to
StaCk in Action (1/4) be executed (like in gdb).
stack.c
(#include <stdlib.h>)

int f(int, int);
int g(int);

=P | int main(int argc, char*x argv) {
o int n1 = f(3, -5);

nl = g(nl);

return EXIT_SUCCESS;

¥

=P | int f(int pl, int p2) {

int x;

int a[3];

=»> | x = gal2]);
return Xx;

}

int g(int param) {
return param * 2;

U y

A/

15

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

Note: arrow points to next instruction to
StaCk in Action (2/4) be executed (like in gdb).
stack.c
(#include <stdlib.h>)

int f(int, int);
int g(int);

int main(int argc, char*xx argv) {
int n1 = f(3, -5);
nl = g(nl);
return EXIT_SUCCESS;

¥

int f(int pl, int p2) {
int x;
int a[3];

x = g(al2]);
o return x;
¥

int g(int param) {
return param x 2;

U y

16

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

Note: arrow points to next instruction to
StaCk in Action (3/4) be executed (like in gdb).
stack.c
(#include <stdlib.h>)

int f(int, int);
int g(int);

int main(int argc, char*xx argv) {
int n1 = f(3, -5);

— nl = g(nl);
return EXIT_SUCCESS;

¥

int f(int pl, int p2) {
int x;
int a[3];

x = g(al2]);
return Xx;

}

int g(int param) {
return param x 2;

U y

A/

17

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Note: arrow points to next instruction to

StaCk in ACtion (4/4) be executed (like in gdb).

stack.c

e <siellBalhs) _

int f(int, int); Stack
int g(int);

main
argc, argy, nl

int main(int argc, charxx argv) {
int nl1 = f(3, -5);

nl = g(nl);
o return EXIT_SUCCESS;

k;

int f(int pl, int p2) { 1
int x; Hea
int a[3]; P
e Read/Write Segment
x = g(a[2]); .data, .bss
return x;

} Read-Only Segment

.text, .rodata

int g(int param) {
return param x 2;

¢

18

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Address Space Layout Randomization

OxFF...FF
+ Linux uses address space layout _

randomization (ASLR) for added SIS
security l
= Randomizes: 1
- Base of stack Shared Libraries
- Shared library (mmap) location 1

= Makes Stack-based buffer overflow

Heap
attacks tougher
Read/Write Segment
= Makes debugging tougher .data, .bss
= Can be disabled (gdb does this by Read-Only Segment
default); Google if curious .text, .rodata

0x00...00

19

WA UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Lecture Outline (2/3)

+» Memory Management (351 refresher)
+» C Data Considerations

<« Parameters

CSE333, Winter 2026

20

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

C Primitive Types and Memory

Do not memorize, these aren’+ strict sizes!

C Data Type 32-bit 64-bit printf

« Integer types

" char, int char 1 1 %C
short 1int 2 2 %hd
unsigned short int| 2 2 %hu

+ Floating point int| 4 2| %d /%
» float. double unsigned int| 4 4 %u
’ long int| 4 8 %1d

long long int| 8 8 %11d

+~ Modifiers float| 4 4 %f

= short [int] double | 8 8 % 1T

. long double | 12 16 %L T
= Long [int, double] pointer | 4 3 %D

= signed [char, int]

"= unsigned [char, int]

21

W UNIVERSITY of WASHINGTON

LO2: Memory, Data, Parameters

C99 Extended Integer Types

CSE333, Winter 2026

'=I-F|:|

—
"\v’n

+ Solves the conundrum of “how bigisan Long 1nt?”

int8_t a;
intle_t b;
int32_t c;
int64_t d;
uint8_t w;

void foo(void) {

/]
/]
/]
/]
/]

-
#include <stdint.h>

exactly
exactly
exactly
exactly
exactly

8 bits, signed
16 bits, signed
32 bits, signed
64 bits, signed
8 bits, unsigned

N

void sumstore(int x, int

y, intx dest) {

l

void sumstore(int32_t x, int32_t y, int32_t* dest) {

<
-
m

22

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Arrays

+ Definition: [type name[size]] allocates
sizexsizeof (type) bytes of contiguous memory

= By default, array values are “mystery” data (i.e., uninitialized)

" Normal usage is a compile-time constant for s1ze
e.g., int scores[175];

+ Size of an array

= Not stored anywhere — array does not know its own size!
- sizeof (array) only works in the variable scope of array definition
= Recent versions of C (but not C++) allow for variable-length arrays
- Uncommon and can be considered bad practice [we won’t use]

int n = 175;
int scores[n]; // OK in C99

23

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Using Arrays

R Initialization:[type name[size] = {val@,...,valN};]

= {} initialization can only be used at time of definition

" |If no size supplied, infers from length of array initializer

+ Array name used as identifier for “collection of data”

= Array name produces the address of the start of the array

- Cannot be assigned to / changed

" name[1ndex] specifies an element of the array and can be
used as an assignment target or as a value in an expression

- |Is actually x (name+index) with pointer arithmetic (Lecture 3)

int primes[6] = {2, 3, 5, 6, 11, 13};
primes[3] = 7;
primes[100] = 0; // memory smash!

24

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Multi-dimensional Arrays

+» @Generic 2D format:
type name[rows][cols] = {{values},..,{values}};

= Still allocates a single, contiguous chunk of memory
= Cisrow-major
4

// a 2-row, 3-column array of doubles
double grid[2][3];

// a 3-row, 5-column array of ints
int matrix[3][5] = {

{09 l’ 2’ 3) 4})

{09 2’ 4’ 69 8})

{1, 3, 5, 7, 9}

\};
= 2-D arrays normally only useful if size known in advance;

otherwise, use dynamically-allocated data

J

25

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

CSE333, Winter 2026

Structs

+» The size and layout of a struct instance is completely

determined by (1) the field ordering and (2) alignment
requirements

= Can review 351 if curious

» In practical terms, wouldn’t solve for these by hand; use
built-in C functionality instead:

= sizeof (type) returnsthe size in bytes

= offsetof (type, field) returns offsetvaluein bytes
- Defined in stddef.h

+» We’ll talk more about struct usage in Lecture 4

26

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters CSE333, Winter 2026

Lecture Outline (3/3)

%+ Memory Management (351 refresher)
% C Data Considerations

<~ Parameters

27

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Parameters: Reference vs. Value

+» There are two fundamental parameter-passing schemes in
programming languages

+ Call-by-value

= Parameter is a local variable initialized with a copy of the calling
argument when the function is called; manipulating the
parameter only changes the copy, not the calling argument

= C, Java, C++ (most things)

+» Call-by-reference

= Parameter is an alias for the supplied argument; manipulating the
parameter manipulates the calling argument

= C++ references (we’ll see these later)

28

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Arrays as Parameters

+ It's tricky to use arrays as parameters
" What happens when you use an array name as an argument?

" Arrays do not know their own size

(ﬁnt SumAll(int a[l); // prototype

int main(int argc, char*x argv) {
int numbers[] = {9, 8, 1, 9, 5};
int sum = SumAll(numbers);
return 0;

}

int SumAll(int a[]) {
int i, sum = 0;
for (i = 0; 1 < ¢4e222

\} J

29

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Solution 1: Declare Array Size

/}nt SumAll(int a[5]); // prototype N

int main(int argc, charxx argv) {
int numbers[] = {9, 8, 1, 9, 5};
int sum = SumAll(numbers);
("sum 1is: %d\n", sum);
return 0;

}

int SumAll(int a[5]) {
int i, sum = 0;
for (i = 0; i < 5; 1i++) {
sum += al[i];
}

return sum;

\}

+ Problem: loss of generality/flexibility

30

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Solution 2: Pass Size as Parameter

/}nt SumAll(int a[], int size); // prototype N

int main(int argc, char*xx argv) {
int numbers[] = {9, 8, 1, 9, 5};
int sum = SumAll(numbers, 5);
("sum 1is: %d\n", sum);
return 0;

}

int SumAll(int a[], int size) {
int 1, sum = 0;
for (i = 0; i < size; i++) {
sum += al[i];
}

return sum;

\}

arraysum.c

+» Standard idiom in C programs!

31

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Arrays: Call-by-what?

+» Technical answer: a T | | array parameter is “promoted”
to a pointer of type T*, and the pointer is passed by value

= So it acts like a call-by-reference array — caller’s array can be
changed if callee modifies the array parameter elements

= But it’s really a call-by-value pointer — the callee’s pointer
parameter can be changed without affecting the caller’s array

 Thisis because T[1] isreally *x(T+17) . We aren’t changing T!

(void CopyArray(int src[], int dst[], int size) { R
int 1;
dst = srcy // doesn't copy the array, copies the address
for (i = 0; 1 < size; 1i++) {
dst[i] = src[i]; // copies source array to itself
k;
\} J

32

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

]

élﬁj
=
m

—
"\v’n

Array Parameters

+ Array parameters are actually passed as pointers to the
first array element

= The [] syntax for parameter types is just for convenience

- Use whichever best helps the reader

This code: Equivalent to:
(void f(int a[]); h (void f(int* a); h
int main(...) { int main(...) {
int a[5]; int a[5];
f(a); f(&a[0]);
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }
 void f(int al[]) {) void f(intx a) {)

33

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Returning an Array

CSE333, Winter 2026

+ Local variables, including arrays, are allocated on the

Stack

" They “disappear” when a function returns!

= Can’t safely return local arrays from functions

- Can’treturn an array as a return value — why not?

(}nt* CopyArray(int src[], int size) {
int 1, dst[size]; // OK in C99

for (1

= 0; 1 < size; i++) {
dst[i] =

srcl[i];

}

\}

return dsty // no compiler error, but wrong!

buggy copyarray.c

34

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Solution: Output Parameter

+ Create the “returned” array in the caller

" Pass it as an output parameter to CopyArray ()

- A pointer parameter that allows the called function to store values
that the caller can use

= Works because arrays are “passed” as pointers

(void CopyArray(int src[], int dst[], int size) { R
int 1;
for (i = 0; 1 < size; 1i++) {
dst[i] = src[i];
}
\} J

copyarray.c

35

W UNIVERSITY of WASHINGTON LO2: Memory, Data, Parameters

Array Memory Diagram (1/3)

main()
original copy

123 | 351 333 ??? ??? ???

/;nt main(){
int originall[] = {123, 351, 333};
int copyl[3];
CopyArray(original, copy, 3);
¥

void CopyArray(int src[], int dst[], int size) {
for (int 1 = 03 1 < size; i++) {
dst[i] = src[i];
+

\J

J

CSE333, Winter 2026

36

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Array Memory Diagram (2/3)

main()
original copy
/ 123 351 333 /' ??7? ??7? ?7?7?
(CopyArray()
\irc/ size |3 dst
/;nt main(){)

int original[] = {123, 351, 333}; dst[i] isreally
int copy[3]; *x(dst+1) . We

CopyArray(original, copy, 3); aren’t changing dst!

}

void CopyArray(int src[], int dst[], int size) {
for (int 1 = 03 1 < size; i++) {
dst[i] = src[i];
+

\J J

37

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Array Memory Diagram (3/3)

main()
original copy
/v123 351 333 /W 123 351 333
(CopyArray()
\irc/ size |3 dst
/;nt main(){)

int original[] = {123, 351, 333}; dst[i] isreally
int copy[3]; *x(dst+1) . We

CopyArray(original, copy, 3); aren’t changing dst!

}

void CopyArray(int src[], int dst[], int size) {
for (int 1 = 03 1 < size; i++) {
dst[i] = src[i];
+

\J J

38

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Output Parameters

+» Output parameters are common in library functions

= long int strtol(charx str, charxx endptr,
int base);

" int sscanf(char* str, charx format, ...);

(}nt num, 1; A
charx p_end, strl = "333 rocks";
char str2[10];

// converts "333 rocks" into long - p_end i1s conversion end
num = (int) strtol(strl, &p_end, 10);

// reads string into arguments based on format string
\Fum = sscanf ("3 blind mice", "%d %s", &i, str2); y

outparam.c

39

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Extra Exercises

+» Some lectures contain “Extra Exercise” slides

= Extra practice for you to do on your own without the pressure of
being graded

"= You may use libraries and helper functions as needed

- Early ones may require reviewing 351 material or looking at
documentation for things we haven’t discussed in 333 yet

= Always good to provide test casesin main ()

+ Solutions for these exercises will be posted on the course
website

" You will get the most benefit from implementing your own
solution before looking at the provided one

40

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Extra Exercise #1

+~ Write a function that:
= Accepts an array of 32-bit unsigned integers and a length
= Reverses the elements of the array in place

= Returns nothing (void)

41

W UNIVERSITY of WASHINGTON L02: Memory, Data, Parameters CSE333, Winter 2026

Extra Exercise #2

« Write a function that:
= Accepts a string as a parameter

® Returns:

- The first white-space separated word in the string as a newly-
allocated string

« AND the size of that word

= (will need to either wait for Lecture 4 or review malloc/free on
your own)

42

	Slide 1: How is course setup going for you?
	Slide 2: Systems Programming Memory, Data, Parameters
	Slide 3: Relevant Course Information (1/2)
	Slide 4: Relevant Course Information (2/2)
	Slide 5: C Compilation Workflow
	Slide 6: Multi-file C Programs
	Slide 7: Compiling Multi-file Programs
	Slide 8: Which of the following statements are FALSE?
	Slide 9: Lecture Outline (1/3)
	Slide 10: OS and Processes
	Slide 11: Processes and Virtual Memory
	Slide 12: Loading
	Slide 13: Memory Management
	Slide 14: Review: The Stack
	Slide 15: Stack in Action (1/4)
	Slide 16: Stack in Action (2/4)
	Slide 17: Stack in Action (3/4)
	Slide 18: Stack in Action (4/4)
	Slide 19: Address Space Layout Randomization
	Slide 20: Lecture Outline (2/3)
	Slide 21: C Primitive Types and Memory
	Slide 22: C99 Extended Integer Types
	Slide 23: Arrays
	Slide 24: Using Arrays
	Slide 25: Multi-dimensional Arrays
	Slide 26: Structs
	Slide 27: Lecture Outline (3/3)
	Slide 28: Parameters: Reference vs. Value
	Slide 29: Arrays as Parameters
	Slide 30: Solution 1: Declare Array Size
	Slide 31: Solution 2: Pass Size as Parameter
	Slide 32: Arrays: Call-by-what?
	Slide 33: Array Parameters
	Slide 34: Returning an Array
	Slide 35: Solution: Output Parameter
	Slide 36: Array Memory Diagram (1/3)
	Slide 37: Array Memory Diagram (2/3)
	Slide 38: Array Memory Diagram (3/3)
	Slide 39: Output Parameters
	Slide 40: Extra Exercises
	Slide 41: Extra Exercise #1
	Slide 42: Extra Exercise #2

