
CSE333, Winter 2026L01: Intro, Getting Started in C

Systems Programming
Intro, Getting Started in C
Systems Programming
Intro, Getting Started in C

Instructors:

Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz Connor Olson

Grace Zhou Jackson Kent Janani Raghavan

Jen Xu Jessie Sun Jonathan Nister

Mendel Carroll Rose Maresh Violet Monserate

CSE333, Winter 2026L01: Intro, Getting Started in C

Course Staff: Instructors

❖ Justin Hsia (he/him)

▪ CSE Associate Teaching Professor

▪ You can just call me “Justin”

▪ Much baby duty/doody this quarter

❖ Amber Hu (they/them)

▪ CSE Lecturer (part-time)

▪ You can call me “Amber,” or for fun “Doctor Hu?”

▪ Fun fact: I took CSE 333 the very first time Justin
taught it

• Guess what year that was/how old I am

2

CSE333, Winter 2026L01: Intro, Getting Started in C

Course Staff: Teaching Assistants

❖ TAs:

▪ Learn more about us on the course website!

❖ More than anything, we want you to feel…

✓Comfortable and welcome in this space

✓Able to learn and succeed in this course

✓Comfortable reaching out if you need help or want change

3

Ally Blake Connor Grace Jackson Janani

Jen Jessie Jonathan Mendel Rose Violet

CSE333, Winter 2026L01: Intro, Getting Started in C

Introductions: Students

❖ ~200 students registered, split across two lectures

❖ Expected background

▪ Prereq: CSE 351 – C, pointers, memory model, linker, system calls

▪ Indirect Prereq: CSE 123 – Classes, Inheritance, Basic Data
structures, and general good style practices

▪ CSE 391 or Linux skills needed for CSE 351 assumed

❖ Get to know each other! Help each other out!

▪ Working well with others is a valuable life skill

▪ Take advantage of partner work, where permissible, to learn, not
just get a grade

• Good chance to learn collaboration tools and tricks
4

https://courses.cs.washington.edu/courses/cse333/26wi/partners/

CSE333, Winter 2026L01: Intro, Getting Started in C

Lecture Outline (1/3)

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html

▪ Digest here, but you must read the full details online

❖ Course Introduction

❖ Getting Started in C

▪ What do you need to write a C program from scratch?

5

https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html

CSE333, Winter 2026L01: Intro, Getting Started in C

Staff-Student Communication

❖ Website: http://cs.uw.edu/333

▪ Schedule, policies, materials, assignments, etc.

❖ Discussion: https://edstem.org/us/courses/89933/

▪ Announcements made here

▪ Ask and answer questions – staff will monitor and contribute

❖ Office Hours: Google Sheet queue (UW login) for both in-
person and virtual OHs

❖ 1-on-1 Meetings: can request a limited number of
appointments via Google Form (UW login)

❖ Anonymous feedback

6

http://cs.uw.edu/333
https://edstem.org/us/courses/89933/

CSE333, Winter 2026L01: Intro, Getting Started in C

Office Hours

❖ Check Weekly Calendar for scheduled office hours:

▪ Zoom meeting links found
in Zoom tab within Canvas

❖ All office hours will use a Google Sheets queue:

▪ Fill out first 3 columns to
enter queue:

❖ We encourage you to chat with other students if the TAs
are busy!

▪ Keep it high level, no sharing code or answers

▪ Trade debugging strategies, tips for using course tools
7

CSE333, Winter 2026L01: Intro, Getting Started in C

Course Components

❖ Lectures (27)
▪ Introduce the concepts; take notes!!!

❖ Sections (10)
▪ Applied concepts, important tools and skills for assignments,

clarification of lectures, exam review and preparation

❖ Programming Exercises (17)
▪ One due most lectures

▪ We are checking for: correctness, memory issues, code style/quality

❖ Programming Project (4)
▪ “Homework” that build on each other

❖ In-Person Exams (2)
▪ Midterm: Monday, February 9 from 5:30–6:40 PM (unconfirmed)

▪ Final: Wednesday, March 18 from 12:30–2:20 PM
8

CSE333, Winter 2026L01: Intro, Getting Started in C

Grading

❖ Exercises: 30% total

▪ Graded on correctness and style by autograders and TAs

❖ Projects: 40% total

▪ Binaries provided if you didn’t get previous part working

▪ Graded on test suite, manual tests, and style

❖ Exams: Midterm (14%) and Final (14%)

▪ Pen and paper to check mastery of concepts

❖ Effort, Participation, and Altruism: 2%

▪ Many ways to earn credit here, relatively lenient on this

9

CSE333, Winter 2026L01: Intro, Getting Started in C

Academic Integrity and Student Conduct

❖ We trust you implicitly and will follow up if that trust is
violated

▪ In short: don’t attempt to gain credit for something you didn’t do
and don’t help others do so, either

❖ This does not mean suffer in silence – learn from the
course staff and peers, talk, share ideas; but don’t share
or copy work that is supposed to be yours

▪ Partners allowed this quarter on projects!

❖ If you find yourself in a situation where you are tempted
to perform academic misconduct, please reach out to the
instructors to explain your situation instead

▪ See the Extenuating Circumstances section of the syllabus

10

https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html#circumstances

CSE333, Winter 2026L01: Intro, Getting Started in C

Lecture Outline (2/3)

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/

▪ Summary here, but you must read the full details online

❖ Course Introduction

❖ Getting Started in C

▪ What do you need to write a C program from scratch?

11

https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/

CSE333, Winter 2026L01: Intro, Getting Started in C

Lower Computing Layers (1/2)

Software Applications
(written in Java, Python, C, etc.)

Programming Languages & Libraries
(e.g., Java Runtime Env, C Standard Lib)

HW/SW interface

OS/App interface

Operating System
(e.g., Linux, MacOS, Windows)

Hardware
(e.g., CPU, memory, disk, network, peripherals)

12

CSE333, Winter 2026L01: Intro, Getting Started in C

Lower Computing Layers (2/2)

Software Applications

HW/SW interface

OS/App interface

Operating System
(e.g., Linux, MacOS, Windows)

Hardware
(e.g., CPU, memory, disk, network, peripherals)

13

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CSE333, Winter 2026L01: Intro, Getting Started in C

Systems Programming

❖ The programming skills, engineering discipline, and
knowledge you need to build a system

▪ Programming: C / C++

▪ Discipline: testing, debugging, performance analysis

▪ Knowledge: long list of interesting topics

• Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, …

• Most important: a deep(er) understanding of the “layer below”

14

CSE333, Winter 2026L01: Intro, Getting Started in C

Discipline?!?

❖ Cultivate good habits, encourage clean code

▪ Coding style conventions

▪ Unit testing, code coverage testing, regression testing

▪ Reading/writing documentation (code comments, design docs)

▪ Code reviews

❖ Will take you a lifetime to learn, but oh-so-important,
especially for systems code

▪ Avoid write-once, read-never code

▪ Treat assignment submissions in this class as production code

• Comments must be updated, no commented-out code, no extra
(debugging) output

15

STYLE
TIP

CSE333, Winter 2026L01: Intro, Getting Started in C

Style Grading in 333

❖ A style guide is a “set of standards for the writing,
formatting, and design of documents” – in this case, code

❖ No style guide is perfect

▪ Inherently limiting to coding as a form of expression/art

▪ Rules should be motivated (e.g., consistency, performance, safety,
readability), even if not everyone agrees

❖ In 333, we will use a subset of the Google C++ Style Guide

▪ Want you to experience adhering to a style guide

▪ Hope you view these more as design decisions to be considered
rather than rules to follow to get a grade

▪ We acknowledge that judgments of language implicitly encode
certain values and not others

16

https://google.github.io/styleguide/cppguide.html

CSE333, Winter 2026L01: Intro, Getting Started in C

Lecture Outline (3/3)

❖ Course Policies
▪ https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/

▪ Summary here, but you must read the full details online

❖ Course Introduction

❖ Getting Started in C

▪ What do you need to write a C program from scratch?

17

https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/

CSE333, Winter 2026L01: Intro, Getting Started in C

C Data Structures Review

❖ C does not support objects!

❖ Arrays are contiguous chunks of memory

▪ No implicit initialization; declaration just gives you “mystery data”

▪ Don’t know their own length, so no bounds checking

❖ C-strings are null-terminated arrays of characters

▪ Example:

▪ string.h has helpful library/utility functions

• Documentation: http://www.cplusplus.com/reference/cstring/

❖ Structs are collections of fields (variables)

▪ The most object-like, but no methods

18

char x[] = "hi\n";

http://www.cplusplus.com/reference/cstring/

CSE333, Winter 2026L01: Intro, Getting Started in C

Generic C Program Layout

#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
 /* the innards */
}

/* define other functions */

STYLE
TIP

19

CSE333, Winter 2026L01: Intro, Getting Started in C

C Syntax: main (1/2)

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ What does this mean?

▪ argc contains the number of strings on the command line (the
executable name counts as one, plus one for each argument)

▪ argv is an array containing pointers to the arguments as strings
(more on pointers later)

❖ Example: $./foo hello 87

▪ argc = 3

▪ argv[0]="./foo", argv[1]="hello", argv[2]="87"

int main(int argc, char* argv[])

20

CSE333, Winter 2026L01: Intro, Getting Started in C

C Syntax: main (2/2)

❖ To get command-line arguments in main, use:

▪ int main(int argc, char* argv[])

❖ Advantages:

▪ Easy to implement – keyboard presses are passed as characters

▪ Flexible – can handle any number of arguments

❖ Disadvantages:

▪ Input checking needed by programmer – prevent user misuse

• Common C idiom is to print back usage messages

▪ Data conversion might be needed – if argument is not intended to
be used as characters

• See Exercise 0!

int main(int argc, char* argv[])

21

CSE333, Winter 2026L01: Intro, Getting Started in C

 A. 44 bytes

 B. 48 bytes

 C. 52 bytes

 D. 56 bytes

 E. We’re lost…

22

pollev.com/cse333a

How much memory would you expect to be
allocated for argv & all of its pointed-to arrays?

$ cp –r dir1 dir2

CSE333, Winter 2026L01: Intro, Getting Started in C

Printing in C

❖ int printf(const char* format, ...);

▪ Can check documentation to learn about (1) parameters,
(2) the return value, and (3) error handling

• https://www.cplusplus.com/reference/cstdio/printf/

▪ Very important to use correct format specifier for the value you
want to print, otherwise implicit casting will occur

•

23

int printf(const char* format, ...);

https://www.cplusplus.com/reference/cstdio/printf/
https://www.cplusplus.com/reference/cstdio/printf/

CSE333, Winter 2026L01: Intro, Getting Started in C

Error Handling

❖ Errors and Exceptions

▪ C does not have exception handling (no try/catch)

▪ Errors are returned as integer error codes from functions

• Because of this, error handling is ugly and inelegant

• For readability, CONSTANT_NAMES are defined to abstract away the
actual integer values – need to look up in documentation

▪ Global variable errno holds value of last system error

❖ Status codes and signals

▪ Processes exit (e.g., return from main) with status code

• Standard codes found in stdlib.h:
EXIT_SUCCESS (usually 0) and EXIT_FAILURE (non-zero)

▪ “Crashes” trigger signals from OS (e.g., SIGSEGV for segfault)

STYLE
TIP

24

CSE333, Winter 2026L01: Intro, Getting Started in C

Function Definitions

❖ Generic format:

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }

 return sum;
}

ReturnType FuncName(type param1, …, type paramN) {
 // statements
}

25

CSE333, Winter 2026L01: Intro, Getting Started in C

Function Ordering

❖ You shouldn’t call a function that hasn’t been declared yet

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return EXIT_SUCCESS;
}

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

sum_badorder.c

Note: code examples from slides are posted on
the course website for you to experiment with!

26

CSE333, Winter 2026L01: Intro, Getting Started in C

Solution 1: Reverse Ordering

❖ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return EXIT_SUCCESS;
}

sum_betterorder.c

27

CSE333, Winter 2026L01: Intro, Getting Started in C

Solution 2: Function Declaration

❖ Teaches the compiler the arguments and return types;
function definitions can then be in a logical order

▪ Function comment usually by the prototype

sum_declared.c // sum of integers from 1 to max
int sumTo(int max); // func prototype

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return EXIT_SUCCESS;
}

int sumTo(int max) {
 int i, sum = 0;
 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

STYLE
TIP

28

CSE333, Winter 2026L01: Intro, Getting Started in C

Function Declaration vs. Definition

❖ C/C++ make a careful distinction between these two

❖ Definition: The thing itself

▪ e.g., code for function, variable definition that creates storage

▪ Must be exactly one definition of each thing (no duplicates)

❖ Declaration: Description of a thing

▪ e.g., function prototype, external variable declaration

• Often in header files and incorporated via #include

• Should also #include declaration in the file with the actual
definition to check for consistency

▪ Needs to appear in all files that use that thing

• Should appear before first use
29

CSE333, Winter 2026L01: Intro, Getting Started in C

333 Workflow Aids/Upgrades

Husky OnNet VPN

❖ See Linux → Text Editors on website for how to configure
vim or VS Code for use in this class

▪ From vi/vim, can compile and execute code without ever leaving
the editor using ":! <cmd>"

▪ For VS Code, can connect to attu remotely and take advantage of
the IDE features

▪ From either text editor, you will want to get comfortable
navigating and editing multiple files simultaneously

❖ We will learn the basics of Makefiles to simplify the
compilation steps into the command make

❖ Required as of 26wi: Husky OnNet VPN for off-campus
attu access

30

https://it.uw.edu/uware/husky-onnet/

CSE333, Winter 2026L01: Intro, Getting Started in C

To-do List

❖ Make sure you’re registered on Canvas, Ed Discussion,
Gradescope, and Poll Everywhere
▪ All user IDs should be your uw.edu email address

❖ Explore the website thoroughly: http://cs.uw.edu/333

❖ Computer setup: CSE lab or SSH into attu
▪ Husky OnNet VPN when you’re off campus (required as of 26wi)

❖ Exercise 0 is due at 11 AM on Wednesday
▪ Find exercise spec on website, submit via Gradescope

▪ Sample solution will be posted Wednesday afternoon

▪ Hint: look at documentation for stdlib.h, string.h, and
inttypes.h

❖ Check for exercise Gitlab repo tomorrow, then follow our guide

❖ Pre-Quarter Survey (Canvas) due Friday @ 11:59 PM
31

http://cs.uw.edu/333
http://cs.uw.edu/333
https://it.uw.edu/uware/husky-onnet/
https://it.uw.edu/uware/husky-onnet/
https://it.uw.edu/uware/husky-onnet/
http://www.cplusplus.com/reference/cstdlib/
http://www.cplusplus.com/reference/cstring/
http://www.cplusplus.com/reference/cinttypes/
https://courses.cs.washington.edu/courses/cse333/26wi/gitlab/

	Slide 1: Systems Programming Intro, Getting Started in C
	Slide 2: Course Staff: Instructors
	Slide 3: Course Staff: Teaching Assistants
	Slide 4: Introductions: Students
	Slide 5: Lecture Outline (1/3)
	Slide 6: Staff-Student Communication
	Slide 7: Office Hours
	Slide 8: Course Components
	Slide 9: Grading
	Slide 10: Academic Integrity and Student Conduct
	Slide 11: Lecture Outline (2/3)
	Slide 12: Lower Computing Layers (1/2)
	Slide 13: Lower Computing Layers (2/2)
	Slide 14: Systems Programming
	Slide 15: Discipline?!?
	Slide 16: Style Grading in 333
	Slide 17: Lecture Outline (3/3)
	Slide 18: C Data Structures Review
	Slide 19: Generic C Program Layout
	Slide 20: C Syntax: main (1/2)
	Slide 21: C Syntax: main (2/2)
	Slide 22: How much memory would you expect to be allocated for argv & all of its pointed-to arrays?
	Slide 23: Printing in C
	Slide 24: Error Handling
	Slide 25: Function Definitions
	Slide 26: Function Ordering
	Slide 27: Solution 1: Reverse Ordering
	Slide 28: Solution 2: Function Declaration
	Slide 29: Function Declaration vs. Definition
	Slide 30: 333 Workflow Aids/Upgrades
	Slide 31: To-do List

