W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C

CSE333, Winter 2026

Systems Programming
Intro, Getting Started in C

Instructors:
Justin Hsia Amber Hu

Teaching Assistants:

Ally Tribble Blake Diaz
Grace Zhou Jackson Kent
Jen Xu Jessie Sun

Mendel Carroll Rose Maresh

Connor Olson
Janani Raghavan
Jonathan Nister
Violet Monserate

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Course Staff: Instructors

% Justin Hsia (he/him)
= CSE Associate Teaching Professor
" You can just call me “Justin”
= . Much baby duty/doody & this quarter

<+ Amber Hu (they/them)
= CSE Lecturer (part-time)
® You can call me “Amber,” or for fun “Doctor Hu?”

" Fun fact: | took CSE 333 the very first time Justin
taught it
- Guess what year that was/how old | am &

WA UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C

Course Staff: Teaching Assistants

® |earn more about us on the course web5|teI

*

L)

- More than anything, we want you to feel...

v’ Comfortable and welcome in this space

D)

v’ Able to learn and succeed in this course
v’ Comfortable reaching out if you need help or want change

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Introductions: Students

+» ~200 students registered, split across two lectures

+ Expected background

" Prereq: CSE 351 —C, pointers, memory model, linker, system calls

" Indirect Prereq: CSE 123 — Classes, Inheritance, Basic Data
structures, and general good style practices

= CSE 391 or Linux skills needed for CSE 351 assumed

+» Get to know each other! Help each other out!
= Working well with others is a valuable life skill

= Take advantage of partner work, where permissible, to learn, not
just get a grade

« Good chance to learn collaboration tools and tricks

https://courses.cs.washington.edu/courses/cse333/26wi/partners/

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Lecture Outline (1/3)

« Course Policies

® https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html

= Digest here, but you must read the full details online
+ Course Introduction
+» Getting Started in C

" What do you need to write a C program from scratch?

https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Staff-Student Communication

+» Website: http://cs.uw.edu/333

= Schedule, policies, materials, assignments, etc.

» Discussion: https://edstem.org/us/courses/89933/

" Announcements made here

= Ask and answer questions — staff will monitor and contribute

» Office Hours: Google Sheet queue (UW login) for both in-
person and virtual OHs

- 1-on-1 Meetings: can request a limited number of
appointments via Google Form (UW login)

+» Anonymous feedback

http://cs.uw.edu/333
http://cs.uw.edu/333
https://edstem.org/us/courses/89933/
https://edstem.org/us/courses/89933/
https://edstem.org/us/courses/89933/

W UNIVERSITY of WASHINGTON

Office Hours

LO1: Intro, Getting Started in C

+» Check Weekly Calendar for scheduled office hours:

= Zoom meeting links found
in Zoom tab within Canvas

Weekly Calendar

Sep 26 - Oct 1, 2022

CSE333, Winter 2026

+ All office hours will use a Google Sheets queue:

= Fill out first 3 columns to
enter queue:

Time
Full Name(s) Category Description Queued Staff Status
Example 1 Concept - What are the advantages and disadvantages of buffering? Justin Done
Example 2 Debugging ~ HW1: valgrind memory leak in Part B from HashTable. Justin Done
Example 3 Spec * EX3: what is required for the testing code in main? Justin Done

Example 4 Tools = GDB: how do | examine memory on the stack?

+» We encourage you to chat with other students if the TAs

are busy!

= Keep it high level, no sharing code or answers

" Trade debugging strategies, tips for using course tools

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Course Components

J/
>

» Lectures (27)
" |ntroduce the concepts; take notes!!!
+ Sections (10)

= Applied concepts, important tools and skills for assignments,
clarification of lectures, exam review and preparation

+» Programming Exercises (17)
® One due most lectures
= We are checking for: correctness, memory issues, code style/quality

+ Programming Project (4)
= “Homework” that build on each other

% In-Person Exams (2)

= Midterm: Monday, February 9 from 5:30-6:40 PM (unconfirmed)
= Final: Wednesday, March 18 from 12:30-2:20 PM

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Grading

Exercises: 30% total

" Graded on correctness and style by autograders and TAs

L)

0’0

’0

+ Projects: 40% total

= Binaries provided if you didn’t get previous part working
" Graded on test suite, manual tests, and style

>

+» Exams: Midterm (14%) and Final (14%)

" Pen and paper to check mastery of concepts

’0

+ Effort, Participation, and Altruism: 2%

= Many ways to earn credit here, relatively lenient on this

CSE333, Winter 2026

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C

Academic Integrity and Student Conduct

+» We trust you implicitly and will follow up if that trust is

violated
" |nshort: don’t attempt to gain credit for something you didn’t do
and don’t help others do so, either

+ This does not mean suffer in silence — learn from the
course staff and peers, talk, share ideas; but don’t share
or copy work that is supposed to be yours
= Partners allowed this quarter on projects!

- If you find yourself in a situation where you are tempted
to perform academic misconduct, please reach out to the
instructors to explain your situation instead
= See the Extenuating Circumstances section of the syllabus

10

https://courses.cs.washington.edu/courses/cse333/26wi/syllabus.html#circumstances

WA UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Lecture Outline (2/3)

« Course Policies

" https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/

= Summary here, but you must read the full details online

« Course Introduction
+» Getting Started in C

" What do you need to write a C program from scratch?

11

https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/

w UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Lower Computing Layers (1/2)

OS/App interface

HW/SW interface

12

w UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Lower Computing Layers (2/2)

OS/App interface

HW/SW interface

13

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C

CSE333, Winter 2026

Systems Programming

+» The programming skills, engineering discipline, and
knowledge you need to build a system
" Programming: C/ C++
= Discipline: testing, debugging, performance analysis

= Knowledge: long list of interesting topics

- Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, ...

- Most important: a deep(er) understanding of the “layer below”

14

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Discipline?!? >Tat

+ Cultivate good habits, encourage clean code
" Coding style conventions
" Unit testing, code coverage testing, regression testing

= Reading/writing documentation (code comments, design docs)
" Code reviews

+ Will take you a lifetime to learn, but oh-so-important,
especially for systems code
= Avoid write-once, read-never code

"= Treat assignment submissions in this class as production code

- Comments must be updated, no commented-out code, no extra
(debugging) output

15

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Style Grading in 333

+ A style guide is a “set of standards for the writing,
formatting, and design of documents” — in this case, code

+» No style guide is perfect
" |nherently limiting to coding as a form of expression/art

= Rules should be motivated (e.g., consistency, performance, safety,
readability), even if not everyone agrees

+» In 333, we will use a subset of the Google C++ Style Guide

= Want you to experience adhering to a style guide

" Hope you view these more as design decisions to be considered
rather than rules to follow to get a grade

= We acknowledge that judgments of language implicitly encode
certain values and not others

16

https://google.github.io/styleguide/cppguide.html

WA UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Lecture Outline (3/3)

« Course Policies

" https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/

= Summary here, but you must read the full details online

« Course Introduction

+» QGetting Started in C
" What do you need to write a C program from scratch?

17

https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/
https://courses.cs.washington.edu/courses/cse333/26wi/syllabus/

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

C Data Structures Review

’0

L)

» C does not support objects!

L)

>

» Arrays are contiguous chunks of memory
= No implicit initialization; declaration just gives you “mystery data”
"= Don’t know their own length, so no bounds checking

L)

0’0

C-strings are null-terminated arrays of characters

= Example: |char x[] = "hi\n";

= string.h has helpful library/utility functions
- Documentation: http://www.cplusplus.com/reference/cstring/

L)

0’0

Structs are collections of fields (variables)

" The most object-like, but no methods

18

http://www.cplusplus.com/reference/cstring/

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Generic C Program Layout S%E

-
#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/*x declare external variables & structs *x/

int main(int argc, charx argv[]) {
/* the innards */
¥

/* define other functions */
\§ J

19

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

C Syntax: main (1/2)

o0

o0

o0

To get command-line arguments in main, use:
[int main(int argc, charx argv[])]

What does this mean?

= argc contains the number of strings on the command line (the
executable name counts as one, plus one for each argument)

" argv isan array containing pointers to the arguments as strings
(more on pointers later)

Example: BEAT T AN I¥{

" argc = 3
= argv[0]="./fo0", argv[1l]="hello", argv[2]="87"

20

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

C Syntax: main (2/2)

+» To get command-line arguments in main, use:
[int main(int argc, charx argv[])]

+» Advantages:

= Easy to implement — keyboard presses are passed as characters
" Flexible — can handle any number of arguments

+ Disadvantages:

" |nput checking needed by programmer — prevent user misuse
« Common Cidiom is to print back usage messages

= Data conversion might be needed — if argument is not intended to
be used as characters

« See Exercise 0!
21

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

0 PO" EveryWhere pollev.com/cse333a FI)

How much memory would you expect to be
allocated for argv & all of its pointed-to arrays?

$ cp -r dirl dir2

A.

B. 48 bytes

C. 52 bytes
D. 56 bytes

E. We're lost...

22

W UNIVERSITY of WASHINGTON

Printing in C

LO1: Intro, Getting Started in C

%[int printf(const charx format, ...)

" Can check documentation to learn about (1) parameters,
(2) the return value, and (3) error handling

« https://www.cplusplus.com/reference/cstdio/printf/

= Very important to use correct format specifier for the value you

want to print, otherwise implicit casting will occur

specifier Output Example
dori Signed decimal integer 392

u Unsigned decimal integer 7235

0 Unsigned octal 610

X Unsigned hexadecimal integer 7fa

X Unsigned hexadecimal integer (uppercase) 7FA

f Decimal floating point, lowercase 392.65

F Decimal floating point, uppercase 392.65

e Scientific notation (mantissa/exponent), lowercase 3.9265e+2

E Scientific notation (mantissa/exponent), uppercase 3.9265E+2

g Use the shortest representation: %e or %f 392.65

G Use the shortest representation: %E or %F 392.65

a Hexadecimal floating point, lowercase -8xc.90fep-2
A Hexadecimal floating point, uppercase -BXC.90FEP-2
c Character a

s String of characters sample

p Pointer address bseceooe

CSE333, Winter 2026

23

https://www.cplusplus.com/reference/cstdio/printf/
https://www.cplusplus.com/reference/cstdio/printf/

W UNIVERSITY of WASHINGTON

LO1: Intro, Getting Started in C

CSE333, Winter 2026

Error Handling T

+ Errors and Exceptions

= Cdoes not have exception handling (no try/catch)
" Errors are returned as integer error codes from functions
- Because of this, error handling is ugly and inelegant

- For readability, CONSTANT_NAMES are defined to abstract away the
actual integer values — need to look up in documentation

" Global variable errno holds value of last system error

+ Status codes and signals

" Processes exit (e.g., return from main) with status code
- Standard codes found in stdlib. h:
EXTIT_SUCCESS (usually0) and EXIT_FATILURE (non-zero)

= “Crashes” trigger signals from OS (e.g., SIGSEGV for segfault)

24

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C

Function Definitions

+ Generic format:

CSE333, Winter 2026

ReturnType FuncName(type paraml,
// statements

}

., type paramN) {

int 1, sum = 0O;

sum += 1;

}

return sum;

}

_

-
// sum of integers from 1 to max
int sumTo(int max) {

for (1 = 1; 1 <= max; 1i++) {

~N

25

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Function Ordering

+ You shouldn’t call a function that hasn’t been declared yet

Note: code examples from slides are posted on
the course website for you to experiment with!

sum_badorder.c (‘int main(int argc, charxx argv) {
printf("sumTo(5) 1is: %d\n", sumTo(5));
return EXIT_SUCCESS;

}

// sum of integers from 1 to max
int sumTo(int max) {
int 1, sum = 0;

for (i = 1; 1 <= max; 1i++) {
sum += 1;
}

return sum;

26

W UNIVERSITY of WASHINGTON

LO1: Intro, Getting Started in C

Solution 1: Reverse Ordering

+ Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

sum_betterorder.c

}

}

-

// sum of integers
int sumTo(int max)

int i1, sum = 0;

for (i = 1; 1 <=
sum += 1;
}

return sum;

from 1 to max

{

max; i++) {

int main(int argc, char*xx argv) {
printf("sumTo(5) 1is: %d\n", sumTo(5));

return EXIT_SUCCESS;

CSE333, Winter 2026

27

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C

CSE333, Winter 2026

Solution 2: Function Declaration Tt

+ Teaches the compiler the arguments and return types;
function definitions can then be in a logical order

" Function comment usually by the prototype

Sum_declared,c (// sum of integers from 1 to max R
int sumTo(int); // func prototype

int main(int argc, char*xx argv) {
printf("sumTo(5) 1is: %d\n", sumTo(5));
return EXIT_SUCCESS;

}

int sumTo(int max) {
int 1, sum = 0;
for (i = 1; 1 <= max; 1i++) {
sum += 1;
+

return sum;

\J Y,

28

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

Function Declaration vs. Definition

+» C/C++ make a careful distinction between these two

+ Definition: The thing itself
= e.g., code for function, variable definition that creates storage
" Must be exactly one definition of each thing (no duplicates)

+ Declaration: Description of a thing

= e.g., function prototype, external variable declaration
- Often in header files and incorporated via #include

« Should also #1nc lLude declaration in the file with the actual
definition to check for consistency

"= Needs to appear in all files that use that thing
- Should appear before first use

29

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

333 Workflow Aids/Upgrades

+ See Linux — Text Editors on website for how to configure
vim or VS Code for use in this class

" From vi/vim, can compile and execute code without ever leaving
the editor using": ! <cmd>"

"= For VS Code, can connect to attu remotely and take advantage of
the IDE features

" From either text editor, you will want to get comfortable
navigating and editing multiple files simultaneously

- We will learn the basics of Makefiles to simplify the
compilation steps into the command make

- Required as of 26wi: Husky OnNet VPN for off-campus
attu access

30

https://it.uw.edu/uware/husky-onnet/

W UNIVERSITY of WASHINGTON LO1: Intro, Getting Started in C CSE333, Winter 2026

To-do List

+» Make sure you're registered on Canvas, Ed Discussion,
Gradescope, and Poll Everywhere
= All user IDs should be your uw.edu email address

Explore the website thoroughly: http://cs.uw.edu/333

» Computer setup: CSE lab or SSH into attu
= Husky OnNet VPN when you’re off campus (required as of 26wi)

Exercise O is due at 11 am on Wednesday
" Find exercise spec on website, submit via Gradescope
= Sample solution will be posted Wednesday afternoon

" Hint: look at documentation for stdlib.h, string.h, and
inttypes.h

+» Check for exercise Gitlab repo tomorrow, then follow our guide

% Pre-Quarter Survey (Canvas) due Friday @ 11:59 pm

31

http://cs.uw.edu/333
http://cs.uw.edu/333
https://it.uw.edu/uware/husky-onnet/
https://it.uw.edu/uware/husky-onnet/
https://it.uw.edu/uware/husky-onnet/
http://www.cplusplus.com/reference/cstdlib/
http://www.cplusplus.com/reference/cstring/
http://www.cplusplus.com/reference/cinttypes/
https://courses.cs.washington.edu/courses/cse333/26wi/gitlab/

	Slide 1: Systems Programming Intro, Getting Started in C
	Slide 2: Course Staff: Instructors
	Slide 3: Course Staff: Teaching Assistants
	Slide 4: Introductions: Students
	Slide 5: Lecture Outline (1/3)
	Slide 6: Staff-Student Communication
	Slide 7: Office Hours
	Slide 8: Course Components
	Slide 9: Grading
	Slide 10: Academic Integrity and Student Conduct
	Slide 11: Lecture Outline (2/3)
	Slide 12: Lower Computing Layers (1/2)
	Slide 13: Lower Computing Layers (2/2)
	Slide 14: Systems Programming
	Slide 15: Discipline?!?
	Slide 16: Style Grading in 333
	Slide 17: Lecture Outline (3/3)
	Slide 18: C Data Structures Review
	Slide 19: Generic C Program Layout
	Slide 20: C Syntax: main (1/2)
	Slide 21: C Syntax: main (2/2)
	Slide 22: How much memory would you expect to be allocated for argv & all of its pointed-to arrays?
	Slide 23: Printing in C
	Slide 24: Error Handling
	Slide 25: Function Definitions
	Slide 26: Function Ordering
	Slide 27: Solution 1: Reverse Ordering
	Slide 28: Solution 2: Function Declaration
	Slide 29: Function Declaration vs. Definition
	Slide 30: 333 Workflow Aids/Upgrades
	Slide 31: To-do List

