
CSE 333
Section 7
HW3, C++, and Inheritance

Logistics

● Exercise 14 due tomorrow (!!) Friday

(2/21) @ 10 am

● HW3 due in a week Thursday (2/27) @

11:59 PM

● How was the midterm?

HW 3 Overview

Index File

Crawling the whole file tree takes a long time!

To save time we’ll write the completed DocTable and
MemIndex into a file!

Byte Ordering and Endianness
• Network (Disk) Byte Order (Big Endian)

• The most significant byte is stored in the lowest address

• Host byte order
• Might be big or little endian, depending on the hardware

• To convert between orderings, we can use
• uint32_t htonl (uint32_t hostlong); // host to network
• uint32_t ntohl (uint32_t netlong); // network to host

• Pro-tip:
The structs in HW3 have toDiskFormat() and toHostFormat() functions
that will convert endianness for you.

Index File Components

Header (metadata)

DocTable

MemIndex

Index File Header
- magic_number: 0xCAFEF00D
- checksum: mathematical signature
- doctable_size: in bytes
- index_size: in bytes

Index File Header - HEX
1. Find a hex editor/viewer of your choice

● xxd <indexfile>
● hexdump –vC <indexfile>
● Pipe the output into a file or into less to view

The header:
Magic word Checksum Doctable size Index size

Hex View

● emacs – “M-x hexl-mode”

● vim – “:%!xxd”

Hex View

● emacs – “M-x hexl-mode”

● vim – “:%!xxd”

For those working in VSCode…

HashTable
• HashTable can have varying

amount of buckets, so start with
num_buckets.

• Buckets can be of varying lengths.
To know the offset, we store some
bucket records.

Buckets
• A bucket is a list that contains

elements in the table. Offset to a
bucket is found in a bucket record.

• Elements can be of various sizes, so
we need to store element positions
to know where each element is.

DocTable

DocTable (Hex)

The header

Num buckets (Chain len Bucket offset)*

DocTable

The buckets: where n is equal to the number of elements

((Element offset)n (DocID Filename len Filename)n)*

The Full Picture

HW Tips
• When Writing, you should (almost) always:

1. .toDiskFormat()
2. fseek()

3. fwrite()

• When Reading, you should (almost) always:
1. fseek()

2. fread()
3. .toHostFormat()

• The most common bugs in the HW involve forgetting to change byte ordering, or
forgetting to fseek().

HW Tips: Index Checker (hw3fsck)
• Hw3fsck checks fields inside the file for

reasonableness. Prints out a helpful message if it
spots some kind of problem.

• More rigorous check on your index file you’ve
produced

• Run./hw3fsck index_filename

• Run after finishing WriteIndex.cc

• Can be found in hw3/hw3fsck directory (and
compiled version in solution_binaries also)

Hex View Exercise
• Take a look at

https://courses.cs.washington.edu/courses/cse333/25wi/sections/sec07.idx
• Download the file, then look into it using your viewer of choice.

• Try to figure out:
• How many documents are in this index?

• Which words are in each document?

https://courses.cs.washington.edu/courses/cse333/24wi/sections/sec07.idx

Hex View Exercise
• Take a look at

https://courses.cs.washington.edu/courses/cse333/25wi/sections/sec07.idx
• Download the file, then look into it using your viewer of choice.

• Try to figure out:
• How many documents are in this index?

• Which words are in each document?

Answer: This index file was built off of test_tree/tiny so 2 documents, and 9 words.

https://courses.cs.washington.edu/courses/cse333/25wi/sections/sec07.idx

Smart Pointers!

Review: Smart Pointers
● std::shared_ptr (Documentation) – Uses reference counting to

determine when to delete a managed raw pointer
○ std::weak_ptr (Documentation) – Used in conjunction with shared_ptr

but does not contribute to reference count

● std::unique_ptr (Documentation) – Uniquely manages a raw pointer

○ Used when you want to declare unique ownership of a pointer

○ Disabled cctor and op=

https://www.cplusplus.com/reference/memory/shared_ptr/
https://www.cplusplus.com/reference/memory/weak_ptr/
https://www.cplusplus.com/reference/memory/unique_ptr/

Using Smart Pointers

● Treat a smart pointer like a normal (raw) pointer, except now you won’t

have to use delete to deallocate memory!

○ You can use *, ->, [] as you would with a raw pointer!

● Initialize a smart pointer by passing in a pointer to heap memory:

unique_ptr<int[]> u_ptr(new int[3]);

○ For shared_ptr and weak_ptr, you can use cctor and op= to get a copy

shared_ptr<int[]> s_ptr(another_shared_ptr);

Using Smart Pointers cont.
● Want to transfer ownership from one unique_ptr to another ?

unique_ptr<T> V = std::move(unique_ptr<T> U);

● Want to convert your weak_ptr to a shared_ptr?
std::shared_ptr s = w.lock();

● Want to get the reference count of a shared_ptr?
int count = s.use_count();

Casting

Different Flavors of Casting
● static_cast<type_to>(expression);

Casting between related types

● dynamic_cast<type_to>(expression);
Casting pointers of similar types (only used with inheritance)

● const_cast<type_to>(expression);
Adding or removing const-ness of a type

● reinterpret_cast<type_to>(expression);
Casting between incompatible types of the same size (doesn’t do float
conversion)

Tips with Casting
● Style: Use C++ style casting in C++

○ Tradeoff: A little extra programming overhead and typing, but provides
clarity to your programs

○ Be explicit as possible with your casting! This means if you notice multiple
operations in an implicit cast, you should explicitly write out each cast!

● Read documentation of casting on which casting to use
○ Documentation: https://www.cplusplus.com/articles/iG3hAqkS/
○ The purpose of C++ casting is to be less ambiguous with what the casts you’re

using are actually doing

https://www.cplusplus.com/articles/iG3hAqkS/

Inheritance

Inheritance
● Motivation: Better modularize our code for similar classes!

● The public interface of a derived class inherits all non-private member
variables and functions (except for ctor, cctor, dtor, op=) from its base
class
○ Similar to: A subclass inherits from a superclass

● Aside: We will be only using public, single inheritance in CSE 333

Polymorphism: Dynamic Dispatch
● Polymorphism allows for you to access objects of related types (base and

derived classes) – Allows interface usage instead of class implementation

● Dynamic dispatch: Implementation is determined at runtime via lookup
○ Allows you to call the most-derived version of the actual type of an object
○ Generally want to use this when you have a derived class

● virtual replaces the class’s default static dispatch with dynamic dispatch
○ Static dispatch determines implementation at compile time
○ Meaning it does not use dynamic dispatch (just calls its function)

Dynamic Dispatch: Style Considerations
● Defining Dynamic Dispatch in your code base

○ Use virtual only once when first defined in the base class
○ (although in older code bases you may see it repeated on functions in subclasses)

○ All derived classes of a base class should use override to get the compiler
to check that a function overrides a virtual function from a base class

● Use virtual for destructors of a base class – Guarantees all derived
classes will use dynamic dispatch to ensure use of appropriate destructors

Dispatch Decision Tree
DeclaredT* ptr = new ActualT();
ptr->Fcn(); // which version is called?

Is Fcn()
defined in

DeclaredT?

Is DeclaredT::Fcn()
marked as Dynamic

Dispatch? (virtual)

Static dispatch of
DeclaredT::Fcn()

Dynamic dispatch of
most-derived

version of Fcn()
visible to ActualT

Yes

No No

Yes

Compiler Error

Exercise 1

46

Exercise 1 (Drawing vtable diagram)

f1

47

Exercise 1 Solution (pointers)

f1

f1
f2
f3

f1
f2
f3

48

#include <iostream>
using namespace std;

class A {
public:
virtual void f1() { f2(); cout << "A::f1" << endl; }
void f2() { cout << "A::f2" << endl; }

};

class B: public A {
public:
virtual void f3() { f1(); cout << "B::f3" << endl; }
virtual void f2() { cout << "B::f2" << endl; }

};

class C: public B {
public:
void f1() { f2(); cout << "C::f1" << endl; }

};

Exercise 1 Solution (output)
#include <iostream>
using namespace std;

class A {
public:
virtual void f1() { f2(); cout << "A::f1" << endl;

}
void f2() { cout << "A::f2" << endl; }

};

class B: public A {
public:
virtual void f3() { f1(); cout << "B::f3" << endl;

}
virtual void f2() { cout << "B::f2" << endl; }

};

class C: public B {
public:
void f1() { f2(); cout << "C::f1" << endl; }

};

A* aa = new A();

aa->f1();

49

A B C D

B::f2
A::f1

A::f2
C::f1

A::f2
A::f1

B::f2
C::f1

Exercise 1 Solution (output)

B* bb = new B();

bb->f1();

50

A B C D

B::f2
A::f1

A::f2
C::f1

A::f2
A::f1

B::f2
C::f1

#include <iostream>
using namespace std;

class A {
public:
virtual void f1() { f2(); cout << "A::f1" << endl;

}
void f2() { cout << "A::f2" << endl; }

};

class B: public A {
public:
virtual void f3() { f1(); cout << "B::f3" << endl;

}
virtual void f2() { cout << "B::f2" << endl; }

};

class C: public B {
public:
void f1() { f2(); cout << "C::f1" << endl; }

};

Exercise 1 Solution (output)

B* bb = new B();
A* ab = bb;

bb->f2();
cout << "----" << endl;
ab->f2();

51

A B C D

B::f2

B::f2

A::f2

B::f2

B::f2

A::f2

A::f2

A::f2

#include <iostream>
using namespace std;

class A {
public:
virtual void f1() { f2(); cout << "A::f1" << endl;

}
void f2() { cout << "A::f2" << endl; }

};

class B: public A {
public:
virtual void f3() { f1(); cout << "B::f3" << endl;

}
virtual void f2() { cout << "B::f2" << endl; }

};

class C: public B {
public:
void f1() { f2(); cout << "C::f1" << endl; }

};

Exercise 1 Extension

Exercise 2 Solution (output)

B* bb = new B();

bb->f3();

53

A B C D

B::f2
A::f1
B::f3

A::f2
A::f1
B::f3

A::f2
C::f1
B::f3

B::f2
C::f1
B::f3

#include <iostream>
using namespace std;

class A {
public:
virtual void f1() { f2(); cout << "A::f1" << endl;

}
void f2() { cout << "A::f2" << endl; }

};

class B: public A {
public:
virtual void f3() { f1(); cout << "B::f3" << endl;

}
virtual void f2() { cout << "B::f2" << endl; }

};

class C: public B {
public:
void f1() { f2(); cout << "C::f1" << endl; }

};

Exercise 2 Solution (output)

A* ac = new C();

ac->f1();

54

A B C D

B::f2
A::f1

A::f2
C::f1

A::f2
A::f1

B::f2
C::f1

#include <iostream>
using namespace std;

class A {
public:
virtual void f1() { f2(); cout << "A::f1" << endl;

}
void f2() { cout << "A::f2" << endl; }

};

class B: public A {
public:
virtual void f3() { f1(); cout << "B::f3" << endl;

}
virtual void f2() { cout << "B::f2" << endl; }

};

class C: public B {
public:
void f1() { f2(); cout << "C::f1" << endl; }

};

Bonus Exercise!

Bonus

#include <memory>
using std::shared_ptr;

struct IntNode {
IntNode(int* val, IntNode* node): value(val), next(node) {}

~IntNode() { delete val; }

int* value;
IntNode* next;

};

Change the following code to use smart pointers.

Bonus
#include <memory>
using std::shared_ptr;

struct IntNode {
IntNode(int* val, IntNode* node) :
value(shared_ptr<int>(val)), next(shared_ptr<IntNode>(node)) {}

~IntNode() { delete value; }

shared_ptr<int> value;
shared_ptr<IntNode> next;

};

Bonus
#include <memory>
using std::shared_ptr;

struct IntNode {
IntNode(int* val, IntNode* node) :
value(shared_ptr<int>(val)), next(shared_ptr<IntNode>(node)) {}

~IntNode() { delete value; }

shared_ptr<int> value;
shared_ptr<IntNode> next;

};

Bonus : Client Code

#include <iostream>

using std::cout;
using std::endl;

int main() {
shared_ptr<IntNode> head(new IntNode(new int(351), nullptr));
head->next = shared_ptr<IntNode>(new IntNode(new int(333), nullptr));
shared_ptr<IntNode> iter = head;
while (iter != nullptr) {
cout << *(iter->value) << endl;
iter = iter->next;

}
}

head
value

next

value

next

351

333

Ref count: 1

Ref count: 1

Ref count: 1

Ref count: 1

iter

Ref count: 2 Ref count: 0Ref count: 0

Ref count: 0
Ref count: 0Ref count: 2

Bonus: Client Code

#include <iostream>

using std::cout;
using std::endl;

int main() {
shared_ptr<IntNode> head(new IntNode(new int(351), nullptr));
head->next = shared_ptr<IntNode>(new IntNode(new int(333), nullptr));
shared_ptr<IntNode> iter = head;
while (iter != nullptr) {
cout << *(iter->value) << endl;
iter = iter->next;

}
}

Nothing left on the heap!

