
llCSE 333 Section 5 - C++ Classes, Dynamic Memory
Welcome back to section! We’re happy you’re here ʕ•ᴥ•ʔ⊹₊⟡⋆

Member, Non-Member, and Friends, Oh My!
Exercise 1) Complete the following table:

 Member Non-member

Access to Private
Members:

Always ● Through getters
and setters

● Through
friend
keyword (do not
use unless
needed)

Function call (Func): obj1.Func(obj2) Func(obj1,
obj2)

Operator call (*): obj1 * obj2 obj1 * obj2

When preferred: ● Functions that
mutate the
object

● “Core” class
functionality

● Non-mutating
functions

● Commutative
functions

● When the class
must be on the
right-hand side

Constructors, Destructors, what is going on?
- Constructor: Can define any number as long as they have different parameters.

Constructs a new instance of the class. The default constructor takes no arguments.
- Copy Constructor: Creates a new instance of the class based on another instance (it’s

the constructor that takes a reference to an object of the same class). Automatically
invoked when passing or returning a non-reference object to/from a function.

- Assignment Operator: Assigns the values of the right-hand-expression to the left-hand-
side instance.

- Destructor: Cleans up the class instance, i.e. free dynamically allocated memory used
by this class instance.

What happens if you don’t define a copy constructor? Or an assignment operator? Or a
destructor? Why might this be bad? (Hint: What if a member of a class is a pointer to a heap-
allocated struct?)
In C++, if you don’t define any of these, a default one will be synthesized for you.

- The synthesized copy constructor does a shallow copy of all fields.
- The synthesized assignment operator does a shallow copy of all fields.
- The synthesized destructor calls the destructors of any fields that have them.

How can you disable the copy constructor/assignment operator/destructor?
Set their prototypes equal to the keyword “delete”: ~SomeClass() = delete;

When is the initialization list of a constructor run, and in what order are data members
initialized?
The initialization list is run before the body of the ctor, and data members are initialized in the
order that they are defined in the class, not by initialization list ordering

What happens if data members are not included in the initialization list?
Data members that don’t appear in the initialization list are default initialized/constructed before
the ctor body is executed. Including when there is no initialization list!

Constructor/Destructor Ordering
Exercise 2) Order the execution of the following program:
class Bar {
 public:
 Bar() : num_(0) { } // 0-arg ctor
 Bar(int num) : num_(num) { } // 1-arg ctor
 Bar(const Bar& other) : num_(other.num_) { } // cctor
 ~Bar() { } // dtor
 Bar& operator=(const Bar& other) = default; // op=
 int get_num() const { return num_; } // getter

 private:
 int num_;
};

class Foo {
 public:
 Foo() : bar_(5) { } // 0-arg ctor
 Foo(const Bar& b) { bar_ = b; } // 1-arg ctor
 ~Foo() { } // dtor

 private:
 Bar bar_;
};

int main() {
 Bar b1(3);
 Bar b2 = b1;
 Foo f1;
 Foo f2(b2);
 return EXIT_SUCCESS;
}

Number the following starting

with 1.

Each method may be called more

than once (i.e., you can put multiple

numbers on the same line).

6_________ Bar 0-arg ctor

1,4_______ Bar 1-arg ctor

2_________ Bar cctor

7_________ Bar op=

3_________ Foo 0-arg ctor

5_________ Foo 1-arg ctor

8,10______ Foo dtor

9,11,12,13 Bar dtor

Dynamically-Allocated Memory: New and Delete
In C++, memory can be heap-allocated using the keywords “new” and “delete”. You can think
of these like malloc() and free() with some key differences:

● Unlike malloc() and free(), new and delete are operators, not functions.
● The implementation of allocating heap space may vary between malloc and new.

New: Allocates the type on the heap, calling the specified constructor if it is a class type.
Syntax for arrays is “new type[num]”. Returns a pointer to the type.

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
anything you called “new” on, you should at some point call “delete” to clean it up. Syntax for
arrays is “delete[] name”.

Just like baking soda and vinegar, you shouldn’t mix malloc/free with new/delete.

Exercise 3) Memory Leaks

#include <cstdlib>

class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 ~Leaky() { delete x_; } // Delete the allocated int
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky** dbl_ptr = new Leaky*;
 Leaky* lky_ptr = new Leaky();
 *dbl_ptr = lky_ptr;
 delete dbl_ptr;
 delete lky_ptr; // Delete of dbl_ptr doesn’t delete what lky_ptr
points to
 return EXIT_SUCCESS;
}

What is leaked by this program? How would you fix the memory leaks?
Deleting the dbl_ptr doesn’t automatically delete what the pointer points to. Have to also
delete lky_ptr and then create a destructor that deletes the allocated int pointer x_.

Exercise 4) Identify the memory error with the following code. Then fix it! [Extra Practice]

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int* arr_;
};

int main(int argc, char** argv) {
 BadCopy* bc1 = new BadCopy;
 BadCopy* bc2 = new BadCopy(*bc1); // BadCopy's cctor

 delete bc1;
 delete bc2;

 return EXIT_SUCCESS;
}

Hint: Draw a memory diagram. What happens when bc1 gets deleted?

The default copy constructor does a shallow copy of the fields, so bc2’s arr_ points to the
same array as bc1’s arr_. When bc1 gets deleted, so does its arr_. But this arr_ is the
same one bc2’s arr_ points to, so when bc2 gets deleted, its arr_ has already been deleted,
leading to an invalid delete (similar to a double free()).

bc1

add add

add add
arr arr

5) Classes usage. Consider the following classes:

class IntArrayList {
 public:
 IntArrayList()
 : array_(new int[MAXSIZE]), len_(0), maxsize_(MAXSIZE) { }
 IntArrayList(const int* const arr, size_t len)
 : len_(len), maxsize_(len_*2) {
 array_ = new int[maxsize_];
 memcpy(array_, arr, len * sizeof(int));
 }

 IntArrayList(const IntArrayList& rhs) {
 len_ = rhs.len_;
 maxsize_ = rhs.maxsize_;
 array_ = new int[maxsize_];
 memcpy(array_, rhs.array_, maxsize_ * sizeof(int));
 }
 // synthesized destructor
 // synthesized assignment operator

 private:
 int* array_;
 size_t len_;
 size_t maxsize_;
};

class Wrap {
 public:
 Wrap() : p_(nullptr) {}
 Wrap(IntArrayList* p) : p_(p) { *p_ = *p; }
 IntArrayList* p() const { return p_; }
 private:
 IntArrayList* p_;
};

struct List {
 IntArrayList v;
};

Here’s an example program using these classes:

int main(int argc, char** argv) {
 IntArrayList a;
 IntArrayList* b = new IntArrayList();
 struct List l { a };
 struct List m { *b };
 Wrap w(b);
 delete b;
 return EXIT_SUCCESS;
}

Draw a memory diagram of the program:

How does the above program leak memory?
The synthesized destructor does not know how to delete an array, so IntArrayList a will
leak. Similarly, synthesized destructor does not know how to delete b’s array, so
IntArrayList* b will leak. struct List l copies a’s contents using the copy constructor,
and when it gets deleted it calls IntArrayList’s destructor, which doesn’t know how to delete
an array, so this will leak too. struct List m copies what b points to into its own field using
the copy constructor, when it gets deleted it does the same thing as struct List l and
leaks. Wrap w just copies the pointer, and the synthesized assignment operator shallow copies
the fields, so w just points to what b points to through its field p_.

Fix the issue in the code above. You may write the solution here.

Implement the destructor:
IntArrayList::~IntArrayList() { delete[] array_; }

a

array

 int[MAXS

b

addr

 array_

 int[MAXS

l
 v array

 int[MAXS

m

 v array

 int[MAXS

w

p addr

Extra Practice - Past Midterm Question

Consider the following (very unusual) C++ program which does compile and execute
successfully. Write the output produced when it is executed.

#include <iostream>
using namespace std;

class foo {
 public:
 foo() { cout << "p"; } // ctor
 foo(int i) { cout << "a"; } // ctor (1 int)
 foo(int i, int j) { cout << "h"; } // ctor (2
ints)
 ~foo() { cout << "s"; } // dtor
};

class bar {
 public:
 bar(): foo_(new foo()) { cout << "g"; } // ctor
 bar(int i): foo_(new foo(i)) { cout << "p"; } // ctor (1 int)
 ~bar() { cout << "e"; delete foo_; } // dtor
 private:
 foo *foo_;
 foo otherfoo_;
};

class baz {
 public:
 baz(int a,int b,int c) : bar_(a), foo_(b,c)
 { cout << "i"; } // ctor (3
ints)
 ~baz() { cout << "n"; } // dtor
 private:
 foo foo_;
 bar bar_;
};

int main() {
 baz b(1,2,3);
 return EXIT_SUCCESS;
}
"happinesss" (yes, with 3 s’s):
Constructing b constructs foo_(2,3) first [h], then bar_(1), which initializes foo_ (a pointer,
not an object) to new foo(1) [a] and default constructs otherfoo_ [p] before printing [p].
The body of b’s constructor then prints [i]. As we exit from main, b destructs, which runs the
destructor body [n] before destructing bar_, which prints [e] before deleting the unnamed
foo(1) [s] pointed to by foo_ and then destructing otherfoo_ [s]. Finally, foo_ in b is
destructed [s].

