
CSE 333 25wi
Section 2
Debugging and Structs

Checking In & Logistics
Any questions, comments, or
concerns?
● Exercises going ok?
● Lectures making sense?

2

● Exercise 4:
○ Due Tomorrow @ 10:00 AM

● Homework 1:
○ Due next Thursday @ 11:59

PM (1/23)
○ Start Early!

Structs and Typedef Review

3

Defining Structs
● To define a struct, we use the struct statement, which typically has a name

(a tag) and must have one or more data members
○ This defines a new data type!

4

struct simplestring_st {
char* word;
int length;

};
struct simplestring_st my_word;

Typedef
● The C Programming language provides the keyword typedef, which defines

an alias (alternate name) for an existing data type
○ This can be used in combination with a struct statement

typedef struct simplestring_st {
char* word;
int length;

} SimpleString;
SimpleString my_word;

struct simplestring_st {
char* word;
int length;

};
typedef struct simplestring_st SimpleString;
SimpleString my_word;

5

Structs and Memory Diagrams
● struct instance is a box, with individual boxes for fields inside of it,

labelled with field names
○ Even though we know that field ordering is guaranteed, we can be loose

with where we place the fields in our diagram

6

typedef struct simplestring_st {
char* word;
int length;

} SimpleString;
SimpleString my_word; ?

my_word
length

word
?

Structs and Pointers
● “.” to access field from struct instance
● “->” to access field from struct pointer

char cse333[] = "cse333";
SimpleString cse333_ss;
SimpleString* cse333_ptr = &cse333_ss;

cse333_ss.word = cse333;
cse333_ptr->length = strlen(cse333);

6
cse333_ss

length

word

'c' 's' 'e' '3' '3' '3' '\0'cse333

cse333_ptr

7

typedef struct simplestring_st {
char* word;
int length;

} SimpleString;

Passing Structs as Parameters

● Assignment copies over all of the field values
○ Unlike reference copying in Java

● Structs are pass-by-copy (as arguments and return
values)
○ Can imitate pass-by-reference by passing pointer to struct

instance instead

8

Debugging Tools

9

Debugging

● ✨ Debugging is a skill that you will need throughout your career! ✨

● The 333 projects are big with lots of potential for bugs
○ Learning to use the debugging tools will make your life a lot easier
○ Course staff will help you learn the tools in office hours, too

● Debugging tool output can be scary at first, but extremely useful once you
know how to parse it

10

Debugging Strategies

Many debugging strategies exist but here’s a simple 5 step process!

1. Observation: Something is wrong with your program!
2. Hypothesis: What do you think is going wrong?
3. Experiment: Use debuggers and other tools to verify the problem
4. Analyze: Identify and implement a fix to the problem.
5. Repeat steps 1-4 until bug free!

11

Key debugging skills to master
1. Stop at “interesting” places

○ Debug after a crash or segfault
○ Use breakpoints to stop during execution

2. Look around when stopped
○ Print values of variables
○ Look at source code
○ Look up/down call chain

3. Resume execution
○ Incrementally, step at a time
○ Until next breakpoint
○ Until finished

12

333 Debugging Options
● gdb (GNU Debugger) is a general-purpose debugging tool

○ Stops at breakpoints and program crashes
○ Lots of helpful features for tracing code, checking current expression values, and

examining memory

● valgrind specifically check for memory errors
○ Great for catching non-crashing odd behavior (e.g., using uninitialized values,

memory leaks on the heap)
○ If your code uses malloc, should use --leak-check=full option

13

Basic Functions in GDB
● Setting breakpoints:

○ break <filename>:<line#>
● Advancing

○ step – into functions
○ next – over functions
○ continue – to next break

14

● Reading Values
○ print – evaluate expression once
○ display – keep evaluating

expression
● Examining memory

○ x – dereference provided address
○ bt – backtracing

● Reference Card:
https://courses.cs.washington.edu/courses/cse333/24wi/resources/gdb-refcard.pdf

https://courses.cs.washington.edu/courses/cse333/22sp/resources/gdb-refcard.pdf

Common Errors

● Misusing Functions: Read documentation (online, through man pages, or
the .h files for your homework) for function parameters and function purpose

○ Oftentimes, this leads to unexpected results!

● Segmentation Fault: Dereferencing an uninitialized pointer, NULL, a
previously-freed pointer, or many other things.

○ GDB automatically halts execution when SIGSEGV is received, useful for
debugging

● Memory “Errors”: Many possible errors, commonly use of uninitialized
memory or “memory leaks” (data allocated on heap that does not get free’d).

○ Use valgrind to help catch memory errors!
15

Trying to Run reverse.c

We have a program reverse.c that accepts a string from the user and reverses
it!

But it has a few problems… let’s take a look!

16

Exercise 1

17

Complete the Memory Diagram
int main() {

char line[MAX_STR];
char* rev_line;

printf("Please enter a string: ");
fgets(line, MAX_STR, stdin);
rev_line = reverse(line);
.
.
.

18*unreached code omitted for space

The Stack

main()

reverse()

char line[]

?char* rev_line

'c''s''e''3''3''3' '\0'

char* s

Complete the Memory Diagram
char* reverse(char* s) {

char* result = NULL;
int L, R;
char ch;

strcpy(result, s);
.
.
.

19*unreached code omitted for space

The Stack

reverse()

NULL ?

?

?

main()

?char* rev_line

'c''s''e''3''3''3' '\0'

char* s

char* result

char ch

int L

int R

char line[]

The Stack

Completed Memory Diagram

20

main()

reverse()

char line[]

'c' 's' 'e' '3' '3' '3' '\0'

?char* rev_line

char* s

char* result NULL

?char ch

?

?int L

int R

Exercise 2 & 3

21

Fix 1: Segfault
● Tool help: run in gdb to find segfault, man for strncpy,bt to find segfault

occurrence

● Old version:
result = NULL;
strcpy(result, s);

● New version:
result = (char*) malloc(strsize);
strncpy(result, s, strsize);

22

Fix 2: Doesn’t reverse string
● Tool help: run in gdb, break on reverse(), step through code, print /s

word at end of function (prints as string)

● Old version:
char ch;
int L = 0, R = strlen(result);

● New version:
char ch;
int L = 0, R = strlen(result) - 1;

23

Fix 3: Memory leaks
● Tool help: run under valgrind, identify un-freed allocation line numbers

● Old version:
char* reverse(char* s) { ...
return result; }

● New version:
char* reverse(char* s) { ...
return result; }
At end of main: free(rev_line);

24

Style Fixes
● Tool help: None? Lecture slides! Google C++ Style Guide!

● malloc error checking:
result = (char*) malloc(strsize);
if (result == NULL) {

// sample error checking. Read the spec on the requirements
// for handling malloc!
exit(EXIT_FAILURE);

}

● Remember to do this for the sake of code style! Malloc errors are rare, but we still
check for failure to keep our code consistent

25

