
CSE333, Winter 2025L28: Course Wrap-Up

Course Wrap-Up
CSE 333 Winter 2025

Instructor: Hal Perkins

Teaching Assistants:
Lainey Jeon Hannah Jiang Irene Lau
Nathan Li Janani Raghavan Sean Siddens
Deeksha Vatwani Yiqing Wang Wei Wu
Jennifer Xu

CSE333, Winter 2025L28: Course Wrap-Up

Final Administrivia

v Please finish course evals while they are still available
v Please nominate great TAs for the Bandes award. Thanks.

§ Both for CSE 333 and for other courses

v Final exam Tue. March 18, 12:30-2:20, Gowen 201 & 301
§ 11:30 lecture A in GWN 201; 2:30 lecture B in GWN 301
§ Review session Mon., March 17, 4:30-~5:30, ECE 105

• Bring questions!!

§ Topic list on the web now; exam will be somewhat weighted towards
2nd half of the quarter

§ Closed book but you may have two 5x8 cards (or equivalent) with
handwritten notes (midterm card + new card or two new cards)

v Ed postings: please use descriptive topics! (not just “15su #7”)

2

CSE333, Winter 2025L28: Course Wrap-Up

So what have we been doing
for the last 10 weeks?

?
3

CSE333, Winter 2025L28: Course Wrap-Up

Course Goals

v Explore the gap between:

4

The computer is a magic
machine that runs programs!

Intro 351

The computer is a stupid machine
that executes really, really simple

instructions (really, really fast).

CSE333, Winter 2025L28: Course Wrap-Up

Course Map: 100,000 foot view

5

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Winter 2025L28: Course Wrap-Up

Systems Programming

v The programming skills, engineering discipline, and
knowledge you need to build a system

§ Programming: C / C++

§ Discipline: design, testing, debugging, performance analysis

§ Knowledge: long list of interesting topics
• Concurrency, OS interfaces and semantics, techniques for consistent

data management, distributed systems algorithms, …
• Most important: a deeper understanding of the “layer below”

6

CSE333, Winter 2025L28: Course Wrap-Up

Main Topics

v C
§ Low-level programming language

v C++
§ The 800-lb gorilla of programming languages
§ “better C” + classes + STL + smart pointers + …

v Memory management
v System interfaces and services
v Networking basics – TCP/IP, sockets, …
v Concurrency basics – POSIX threads, synchronization

7

CSE333, Winter 2025L28: Course Wrap-Up

The C/C++ Ecosystem

v System layers:
§ C/C++
§ Libraries
§ Operating system

v Building Programs:
§ Pre-processor (cpp, #include, #ifndef, …)
§ Compiler: source code → object file (.o)
§ Linker: object files + libraries → executable

v Build tools:
§ make and related tools
§ Dependency graphs

8

CSE333, Winter 2025L28: Course Wrap-Up

Program Execution

v What’s in a process?
§ Address space
§ Current state

• SP, PC, register values, etc.

§ Thread(s) of execution
§ Environment

• Arguments, open files, etc.

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

9

CSE333, Winter 2025L28: Course Wrap-Up

Structure of C Programs
v Standard types and operators

§ Primitives, extended types, structs, arrays, typedef, etc.

v Functions
§ Defining, invoking, execution model

v Standard libraries and data structures
§ Strings, streams, etc.
§ C standard library and system calls, how they are related

v Modularization
§ Declaration vs. definition
§ Header files and implementations
§ Internal vs. external linkage

v Handling errors without exception handling
§ errno and return codes

10

CSE333, Winter 2025L28: Course Wrap-Up

C++ (and C++11 and later)

v A “better C”
§ More type safety, stream objects, memory management, etc.

v References and const
v Classes and objects!

§ So much (too much?) control: constructor, copy constructor,
assignment, destructor, operator overloading

§ Inheritance and subclassing
• Dynamic vs. static dispatch, virtual functions, vtables and vptrs
• Pure virtual functions and abstract classes
• Subobjects and slicing on assignment

v Copy semantics vs. move semantics

11

CSE333, Winter 2025L28: Course Wrap-Up

C++ (and C++11 and later)

v C++ Casting
§ What are they and why do we distinguish between them?
§ Implicit conversion/construction and explicit

v Templates – parameterized classes and functions
§ Similarities and differences from Java generics
§ Template implementation via expansion

v STL – containers, iterators, and algorithms
§ vector, list, map, set, etc.
§ Copying and types

v Smart Pointers
§ unique_ptr, shared_ptr, weak_ptr
§ Reference counting and resource management

12

CSE333, Winter 2025L28: Course Wrap-Up

Dynamic Dispatch, Virtual Functions, &c

v The most frequent question on ed as the exam
approaches, based on past experience.

v How to solve it? Understand the difference between static
compile-time types (declared types) and actual type of the
object referenced by a pointer.

v Understand which functions are virtual and which aren’t
§ And remember that virtual is sticky, applies to all inherited /

overridden function in subclasses

v Then follow the chart (from lec. 19) ….

13

CSE333, Winter 2025L28: Course Wrap-Up

Mixed Dispatch
v Which function is called is a mix of both compile time and

runtime decisions as well as how you call the function
§ If called on an object (e.g. obj.Fcn()), usually optimized into a

hard-coded function call at compile time
§ If called via a pointer or reference:
DeclaredT *ptr = new ActualT;
ptr->Fcn(); // which version is called?

14

Static dispatch – call
DeclaredT::fcn()

Is Fcn() defined in
DeclaredT

(either locally or
inherited)?

Is DeclaredT::Fcn()
marked virtual in

DeclaredT or in one of
its superclasses?

Error

Dynamic dispatch – call most-
derived version of fcn()

visible in ActualT

Yes Yes

NoNo

CSE333, Winter 2025L28: Course Wrap-Up

Memory

v Object scope and lifetime
§ Static, automatic, and dynamic allocation / lifetime

v Pointers and associated operators (&, *, ->, [])
§ Can be used to link data or fake “call-by-reference”

v Dynamic memory allocation
§ malloc/free (C), new/delete (C++)
§ Who is responsible? Who owns the data? What happens when

(not if) you mess this up? (dangling pointers, memory leaks, …)

v Tools
§ Debuggers (gdb), monitors (valgrind), paper/whiteboards(!)
§ Most important tool: thinking!

15

CSE333, Winter 2025L28: Course Wrap-Up

Networking

v Conceptual abstraction layers
§ Physical, data link, network, transport, session, presentation,

application
§ Layered protocol model

• We focused on IP (network), TCP (transport), and HTTP (application)

v Network addressing
§ MAC addresses, IP addresses (IPv4/IPv6), DNS (name servers)

v Routing
§ Layered packet payloads, security, and reliability

16

CSE333, Winter 2025L28: Course Wrap-Up

Network Programming

Client side
1) Get remote host IP

address/port
2) Create socket
3) Connect socket to remote

host
4) Read and write data
5) Close socket

Server side
1) Get local host IP

address/port
2) Create socket
3) Bind socket to local host
4) Listen on socket
5) Accept connection from

client
6) Read and write data
7) Close socket

17

CSE333, Winter 2025L28: Course Wrap-Up

Concurrency

v Why or why not?
§ Better throughput, resource utilization (CPU, I/O controllers)
§ Tricky to get right – harder to code and debug

v Threads – “lightweight”
§ Address space sharing; separate stacks for each thread
§ Standard C/C++ library: pthreads

v Processes – “heavyweight”
§ Isolated address spaces
§ Forking functionality provided by OS

v Synchronization
§ Data races, locks/mutexes, how much to lock…

18

CSE333, Winter 2025L28: Course Wrap-Up

Processes vs Threads on One Slide
OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

OS kernel [protected]

Stackparent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SPparent

PCparent

StackchildSPchild

PCchild

19

CSE333, Winter 2025L28: Course Wrap-Up

And a little bit of coding…
v Exercises

§ Small(ish) programs to try out new ideas and learn new things
§ Real Programmers® do this all the time

• Super useful to try new ideas and use them in a small setting before
relying on them in larger projects

• Important habit to acquire – can save huge amounts of time in the end

v Projects
§ A chance to pull ideas together and get experience building bigger things

v Great programmers get that way because of the time, effort,
and practice from writing lots of great code. With luck, CSE333
gave you a useful push in that direction.

20

CSE333, Winter 2025L28: Course Wrap-Up

Phew! That’s it!

v But that’s a lot!!

v Take a look back and congratulate yourself on what
you’ve accomplished in a 10-week quarter!

21

CSE333, Winter 2025L28: Course Wrap-Up

One last thing…

v Studying for the exam: (your mileage may vary)

§ Review first, make notes
• Review lecture slides, exercises, sections, end-of-lecture problems
• Look at topic list on website to check your coverage and help organize
• Brainstorm (“ideate”?) and trade ideas with colleagues

§ “Simulate” an old exam
• Do it in one timed sitting
• Working problems is far more helpful than reading old answers!

§ “Grade” yourself, then go back and review problems
• If still unsure why, ask staff or your fellow students (study groups!)
• Rinse and repeat!

22

CSE333, Winter 2025L28: Course Wrap-Up

Courses: What’s Next?
v CSE401: Compilers (pre-reqs: 332, 351)

§ Finally understand why a compiler does what it does

v CSE451: Operating Systems (pre-reqs: 332, 333)
§ How do you manage all of the computer’s resources?

v CSE452: Distributed Systems (pre-reqs: 332, 333)
§ How do you get large collections of computers to collaborate (correctly!)?

v CSE461: Networks (pre-reqs: 332, 333)
§ The networking nitty-gritty: encoding, transmission, routing, security

v CSE455: Computer Vision
v CSE457: Computer Graphics

v And many more….

23

CSE333, Winter 2025L28: Course Wrap-Up

This doesn’t happen without lots of help…

v Thanks to a fantastic staff – it can’t work without them!!
 Lainey Jeon Hannah Jiang Irene Lau
 Nathan Li Janani Raghavan Sean Siddens
 Deeksha Vatwani Yiqing Wang Wei Wu
 Jennifer Xu

v And thanks to the folks who put the course together:
§ Steve Gribble, John Zahorjan, me, Justin Hsia, Hannah Tang,

Aaron Johnston, Travis McGaha, many others

24

CSE333, Winter 2025L28: Course Wrap-Up

And thanks to…

You!

It’s been great to share new ideas and skills with everyone.
You should be proud of what you’ve done. Please take care
of yourself, watch your health, stay active, and help yourself,
your friends, your community.

25

CSE333, Winter 2025L28: Course Wrap-Up

Congratulations and best wishes!

You’ve learned a lot – go out and build great things!

Come by and say hello in the future – I’d love to know what
you’ve been up to after CSE 333!

26

CSE333, Winter 2025L28: Course Wrap-Up

27

