W UNIVERSITY of WASHINGTON

L25: Concurrency Intro

Introduction to Concurrency

CSE 333 Winter 2025

Instructor: Hal Perkins

Teaching Assistants:
Lainey Jeon Hannah Jiang

Nathan Li Janani Raghavan
Deeksha Vatwani Yiging Wang

Jennifer Xu

Irene Lau
Sean Siddens
Wei Wu

CSE333, Winter 2025

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Administrivia

% Sections tomorrow: pthread tutorial

= pthread exercise posted after sections, due Monday morning

«» HW4 due a week from tomorrow

= How's it going? Networking code??

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Outline

% Understanding Concurrency

= Why is it useful
= Why is it hard

% Concurrent Programming Styles
" Threads vs. processes

= Asynchronous or non-blocking I/0

- “Event-driven programming”

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Building a Web Search Engine

+ We need:

= A web index
- A map from <word> to <list of documents containing the word>
- This is probably sharded over multiple files
" A query processor
- Accepts a query composed of multiple words
- Looks up each word in the index

- Merges the result from each word into an overall result set

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Web Search Architecture

client

index
file

client

. client
file

processor

client

index . query

index
file

client

W UNIVERSITY of WASHINGTON

L25: Concurrency Intro

CSE333, Winter 2025

Sequential Implementation

+» Pseudocode for sequential query processor:

rdoclist Lookup (string word) {
bucket = hash (word) ;

hitlist = file.read (bucket);
foreach hit in hitlist {

doclist.append(file.read (hit))

}

return doclist;

}

main () {
while (1) {

string query words[] =

GetNextQuery () ;
results =

Lookup (query words[0]);
foreach word in query[l..n] {

results = results.intersect (Lookup (word)) ;

}
Display (results) ;

() AzondaxsN3IeD

LN
(o]
o
(@]
—
(¥}
=
c
o™
(0]
(9]
(TH]
)
O

|>|
>~ O/I YIomisu
.
W () AetdsTa
o ndo
|m ()309sI93UT S3TNSeT
o)
W 0/I ASTP
!
.._u () dnyjoorT
£ -
4 > ndo
W a () 30o®sa®3uT- " s3Tnsax Wvu.
M e o
g 2 0/T 3STP
d () dnyjoorT
_“ O/I ¥STIp
m m () dnyjoorT
- I
{ 3 y—
- () AxongaxeNI oD
- () uteu
=

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

What About I/O-caused Latency?

CSE333, Winter 2025

+ Jeff Dean’s “Numbers Everyone Should Know” (LADIS ‘09)

It

Numbers Everyone Should Know
L1 cache reference QS iiir's
Branchifimilspreediei Sillnis
L2 cache reference it
Mutex lock/unlock D OIS
Main memory reference 0 Oims
Compress 1K bytes with Zippy OO0 OMImIS
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory SO0 OMnIS
Round trip within same datacenter SO0V 0NN
Disk seek 100001000 ins
Read 1 MB sequentially from network eI 04SN0 KOOI o1
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA->Netherlands->CA s QA6 GO0
Google -

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Execution Timeline: To Scale

@) @)
>~ >~
O O @)
— NG N < —
v H H H v
g IV, I, IV, g °oo
2 0 0 0 2
5 — -r| — 5
5 o T o 0
— G -
o
e
d
&
______________________________ >
time

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Sequential Queries — Simplified

Only one I/0 request at
The CPU is idle most a time is “in flight”

of the time! /
(picture not to scale)

Queries don’t run until
earlier queries finish

10

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Sequential Queries: To Scale

11

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Sequential Can Be Inefficient

+» Only one query is being processed at a time
= All other queries queue up behind the first one

% The CPU is idle most of the time
= |tis blocked waiting for |/O to complete

- Disk I/O can be very, very slow

+» At most one |I/O operation is in flight at a time
= Missed opportunities to speed I/O up

- Separate devices in parallel, better scheduling of a single device, etc.

12

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Concurrency

+ A version of the program that executes multiple tasks
simultaneously

= Example: Our web server could execute multiple queries at the
same time

- While one is waiting for I/0, another can be executing on the CPU
= Example: Execute queries one at a time, but issue //0 requests
against different files/disks simultaneously

- Could read from several index files at once, processing the |/O results
as they arrive

% Concurrency != parallelism

= parallelism is when multiple CPUs work simultaneously on 1 job

13

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

A Concurrent Implementation

+» Use multiple threads or processes

= As a query arrives, fork a new thread (or process) to handle it

- The thread reads the query from the console, issues read requests
against files, assembles results and writes to the console

- The thread uses blocking I/0; the thread alternates between
consuming CPU cycles and blocking on 1/0O

= The OS context switches between threads/processes
« While one is blocked on I/0, another can use the CPU

- Multiple threads’ I/O requests can be issued at once

14

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

CSE333, Winter 2025

Introducing Threads

+ Separate the concept of a process from an individual

“thread of control”

= Usually called a thread (or a lightweight process), this is a
sequential execution stream within a process

— thread

« In most modern OS’s:
= Process: address space, OS resources/process attributes

® Thread: stack, stack pointer, program counter, registers

"= Threads are the unit of scheduling and processes are their
containers; every process has at least one thread running in it

15

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

Multithreaded Pseudocode

CSE333, Winter 2025

rmain() { b
while (1) {
string query words[] = GetNextQuery ()
ForkThread (ProcessQuery ()) ;
}
\} J

rdoclist Lookup (string word) {

bucket = hash (word);

hitlist = file.read (bucket);

foreach hit in hitlist
doclist.append(file.read (hit))

return doclist;

}

ProcessQuery () {
results = Lookup (query words[0]);
foreach word in query[l..n]
results = results.intersect (Lookup (word)) ;

Display (results);

16

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Multithreaded Queries — Simplified

query 3

query 2

query 1

17

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Why Threads?

+» Advantages:

" You (mostly) write sequential-looking code

= Threads can run in parallel if you have multiple CPUs/cores

+ Disadvantages:
= |f threads share data, you need locks or other synchronization
- Very bug-prone and difficult to debug
= Threads can introduce overhead
- Lock contention, context switch overhead, and other issues

= Need language support for threads

18

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

Alternative: Processes

+» What if we forked processes instead of threads?

+» Advantages:

= No shared memory between processes

= No need for language support; OS provides “fork”

+ Disadvantages:

" More overhead than threads during creation and context
switching

= Cannot easily share memory between processes — typically
communicate through the file system

CSE333, Winter 2025

19

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Threads vs. Processes

pthread create()

\ 4

20

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Threads vs. Processes

fork ()

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Alternate: Asynchronous 1/O

+» Use asynchronous or non-blocking 1/0

+ Your program begins processing a query

= When your program needs to read data to make further progress,
it registers interest in the data with the OS and then switches to a
different query

"= The OS handles the details of issuing the read on the disk, or
waiting for data from the console (or other devices, like the
network)

= When data becomes available, the OS lets your program know

+ Your program (almost never) blocks on I/O

22

W UNIVERSITY of WASHINGTON L25: Concurrency Intro

CSE333, Winter 2025

Event-Driven Programming

» Your program is structured as an event-loop

rvoid dispatch (task, event) {
switch (task.state) {
case READING FROM CONSOLE:
query words = event.data;
async_read(index, query words[0]);
task.state = READING FROM INDEX;
return;
case READING FROM INDEX:

}

while (1) {
event = 0S.GetNextEvent () ;
task = lookup (event) ;
dispatch (task, event);

}

\.

23

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Asynchronous, Event-Driven

24

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Non-blocking vs. Asynchronous

+ Reading from the network can truly block your program

= Remote computer may wait arbitrarily long before sending data

+» Non-blocking I/O (network, console)

= Your program enables non-blocking I/O on its file descriptors

" Your program issues read () and write () system calls
- If the read/write would block, the system call returns immediately

" Program can ask the OS which file descriptors are
readable/writeable

- Program can choose to block while no file descriptors are ready

25

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Non-blocking vs. Asynchronous

+» Asynchronous |/O (disk)
= Program tells the OS to being reading/writing

- The “begin_read” or “begin_write” returns immediately

- When the I/O completes, OS delivers an event to the program

+ According to the Linux specification, the disk never blocks
your program (just delays it)
= Asynchronous I/O is primarily used to hide disk latency

= Asynchronous I/O system calls are messy and complicated ®

26

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

Why Events?

+» Advantages:

= Don’t have to worry about locks and race conditions

" For some kinds of programs, especially GUIs, leads to a very
simple and intuitive program structure

« One event handler for each Ul event

+ Disadvantages:

= Can lead to very complex structure for programs that do lots of
disk and network 1/O

- Sequential code gets broken up into a jumble of small event handlers

- You have to package up all task state between handlers

27

W UNIVERSITY of WASHINGTON L25: Concurrency Intro CSE333, Winter 2025

One Way to Think About It

« Threaded code:

" Each thread executes its task sequentially, and per-task state is
naturally stored in the thread’s stack

= OS and thread scheduler switch between threads for you

« Event-driven code:

= *You* are the scheduler

" You have to bundle up task state into continuations (data
structures describing what-to-do-next); tasks do not have their

own stacks

28

