
CSE333, Winter 2025L13: C++ Heap

C++ Class Details, Heap
CSE 333 Winter 2025

Instructor: Hal Perkins

Teaching Assistants:
Lainey Jeon Hannah Jiang Irene Lau
Nathan Li Janani Raghavan Sean Siddens
Deeksha Vatwani Yiqing Wang Wei Wu
Jennifer Xu

CSE333, Winter 2025L13: C++ Heap

Administrivia (1)
v Yet another exercise released today, due Wed.

§ Rework exercise 9 but with dynamic memory for the instance variables
and no getters this time
• Fine to use ex9 solution as a starting point for ex10

v …Homework 2 due Thursday night
§ File system crawler, indexer, and search engine
§ Check your work!! Clone the repo when you’re done, do git checkout

hw2-final; cd hw1 and copy/build libhw1.a; cd hw2; make; then test
§ Reminder: do not modify header files
§ Reminder: commit/push your work regularly, not all at once at the end

(no exercise due Friday…. J)

2

CSE333, Winter 2025L13: C++ Heap

Administrivia (2)

v Canvas gradebook has a “late days remaining” entry
§ updated for hw0, hw1 – let us know if something looks wrong

• (email to cse333-staff[at]cs if problems)

v Midterm exam in a week: Thursday 2/13, 5-6 pm,
Kane 110
§ Topic list and old exams on website now (see exams link on

resources page)
§ Closed book, slides, etc., but you may have one 5x8 notecard with

whatever handwritten notes you want on both sides
• Free blank cards available in class later this week and next J

§ Review in sections next week

3

CSE333, Winter 2025L13: C++ Heap

Lecture Outline

v Class Details
§ Filling in some gaps from last time

v Using the Heap
§ new / delete / delete[]

4

CSE333, Winter 2025L13: C++ Heap

Rule of Three

v If you define any of:
1) Destructor
2) Copy Constructor
3) Assignment (operator=)

v Then you should normally define all three
§ Can explicitly ask for default synthesized versions (C++11 & later):

5

class Point {
 public:
 Point() = default; // the default ctor
 ~Point() = default; // the default dtor
 Point(const Point& copyme) = default; // the default cctor
 Point& operator=(const Point& rhs) = default; // the default "="
 ...

CSE333, Winter 2025L13: C++ Heap

Dealing with the instanity
v C++ style guide tip:

§ If possible, disable the copy constructor and assignment operator if not
needed – avoids implicit invocation and excessive copying. C++11 and
later have direct syntax to indicate this:

6

class Point {
 public:
 Point(const int x, const int y) : x_(x), y_(y) { } // ctor
 ...
 Point(const Point& copyme) = delete; // declare cctor and "=" as
 Point& operator=(const Point& rhs) = delete; // as deleted (C++11)
 private:
 ...
}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point_2011.h

CSE333, Winter 2025L13: C++ Heap

If you’re dealing with old code…

v In pre-C++11 code the copy constructor and assignment
were often disabled by making them private and not
implementing them (you may see this)…

7

class Point {
 public:
 Point(const int x, const int y) : x_(x), y_(y) { } // ctor
 ...
 private:
 Point(const Point& copyme); // disable cctor (no def.)
 Point& operator=(const Point& rhs); // disable "=" (no def.)
 ...
}; // class Point

Point w; // compiler error (no default constructor)
Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point.h

CSE333, Winter 2025L13: C++ Heap

CopyFrom
v Old C++11 style guide tip:

§ If you disable them, then you instead may want an explicit “CopyFrom”
function that can be used when occasionally needed

§ Google advice has changed over time – these days prefer copy ctr, op=

8

class Point {
 public:
 Point(const int x, const int y) : x_(x), y_(y) { } // ctor
 void CopyFrom(const Point& copy_from_me);
 ...
 Point(Point& copyme) = delete; // disable cctor
 Point& operator=(Point& rhs) = delete; // disable "="
 private:
 ...
}; // class Point

Point.h

Point x(1, 2); // OK
Point y(3, 4); // OK
x.CopyFrom(y); // OK

sanepoint.cc

CSE333, Winter 2025L13: C++ Heap

struct vs. class
v In C, a struct can only contain data fields

§ Has no methods and all fields are always accessible
§ In struct foo, the foo is a “struct tag”, not an ordinary data type

v In C++, struct and class are (nearly) the same!
§ Both define a new type (the struct or class name)
§ Both can have methods and member visibility (public/private/protected)
§ Only real (minor) difference: members are default public in a struct

and default private in a class
– Best to always explicitly write public or private to make intent clear

v Common style/usage convention:
§ Use struct for simple bundles of data

• Convenience constructors can make sense though
§ Use class for abstractions with data + functions

9

CSE333, Winter 2025L13: C++ Heap

Access Control

v Access modifiers for members:
§ public: accessible to all parts of the program
§ private: accessible to the member functions of the class

• Private to class, not object instances

§ protected: accessible to member functions of the class and
any derived classes (subclasses – more to come, later)

v Reminders:
§ Access modifiers apply to all members that follow until another

access modifier is reached
§ If no access modifier is specified, struct members default to
public and class members default to private

10

CSE333, Winter 2025L13: C++ Heap

Nonmember Functions

v “Nonmember functions” are just normal functions that
happen to use some class
§ Called like a regular function instead of as a member of a class

object instance
• This gets a little weird when we talk about operators…

§ These do not have access to the class’ private members

v Useful nonmember functions are often included as part of
the interface to a class
§ Declaration goes in header file, but outside of class definition

• But inside the same namespace as the class, if it has one
§ Super useful for class-related things like overloaded operators

(operator+, etc.), stream I/O (operator<<), etc. …

11

CSE333, Winter 2025L13: C++ Heap

Review: Operator Overloading

v Can overload operators using member functions
§ Restriction: left-hand side argument must be the class you are

implementing

v Can overload operators using nonmember functions
§ No restriction on arguments (can specify any two)

• Our only option when the left-hand side is a class or type you do not
have control over, like ostream or istream or int, etc.

§ But no access to private data or function members

12

Complex operator+(const Complex &a, const Complex &b) { ... }

Complex& operator+=(const Complex &a) { ... }

CSE333, Winter 2025L13: C++ Heap

friend Nonmember Functions

v A class can give a nonmember function (or class) access to
its nonpublic members by declaring it as a friend
within its definition
§ friend function is not a class member, but has access privileges

as if it were
§ friend functions are usually unnecessary if your class includes

appropriate “getter” public functions

13

class Complex {
 ...
 friend std::istream& operator>>(std::istream& in, Complex& a);
 ...
}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
 ...
}

Complex.h

Complex.cc

CSE333, Winter 2025L13: C++ Heap

When to use Nonmember and friend

v Member functions:
§ Operators that modify the object being called on

• Assignment operators (operator=; plus operator=, operator-=
if you have those)

§ “Core” non-operator functionality that is part of the class interface

v Nonmember functions:
§ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

§ If operating on two types and the class is on the right-hand side
• e.g., cin >> complex;

§ Returning a “new” object, not modifying an existing one
§ Only grant friend permission if you NEED to

14

CSE333, Winter 2025L13: C++ Heap

Namespaces

v Each namespace is a separate scope
§ Useful for avoiding symbol collisions

v Namespace definition:
§ namespace name {
 // declarations go here
}

§ Creates a new namespace name if it did not exist, otherwise adds
to the existing namespace (!)
• This means that components (classes, functions, etc.) of a namespace

can be defined in multiple source files
– All of the standard library is in namespace std but it has many source files

15

namespace name {
 // declarations go here
}

CSE333, Winter 2025L13: C++ Heap

Classes vs. Namespaces

v They seems somewhat similar, but classes are not
namespaces:

§ There are no instances/objects of a namespace; a namespace is
just a group of logically-related things (classes, functions, etc.)

§ To access a member of a namespace, you must use the fully
qualified name (i.e. nsp_name::member)
• Unless you are using that namespace or individual member item
• You only used the fully qualified name of a class member when you

are defining it outside of the scope of the class definition

16

CSE333, Winter 2025L13: C++ Heap

Lecture Outline

v Class Details
§ Filling in some gaps from last time

v Using the Heap
§ new / delete / delete[]

17

CSE333, Winter 2025L13: C++ Heap

C++11 nullptr

v C and C++ have long used NULL as a pointer value that
references nothing

v C++11 introduced a new literal for this: nullptr
§ New reserved word
§ Interchangeable with NULL for all practical purposes, but it has

type T* for any/every T, and is not an integer value
• Avoids funny edge cases, especially with function overloading

(f(int) vs f(T*); see C++ references for details)
• Still can convert to/from integer 0 for tests, assignment, etc.

§ Advice: prefer nullptr in C++11 code
• Though NULL will also be around for a long, long time

18

CSE333, Winter 2025L13: C++ Heap

new/delete

v To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h
§ You can use new to allocate an object (e.g. new Point)

• Will execute appropriate constructor as part of object allocate/create

§ You can use new to allocate a primitive type (e.g. new int)

v To deallocate a heap-allocated object or primitive, use the
delete keyword instead of free() from stdlib.h
§ Don’t mix and match!

• Never free() something allocated with new
• Never delete something allocated with malloc()
• Careful if you’re using a legacy C code library or module in C++

19

CSE333, Winter 2025L13: C++ Heap

new/delete Example

#include "Point.h"
using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {
 Point* x = AllocatePoint(1, 2);
 int* y = AllocateInt(3);

 cout << "x's x_ coord: " << x->get_x() << endl;
 cout << "y: " << y << ", *y: " << *y << endl;

 delete x;
 delete y;
 return 0;
}

int* AllocateInt(int x) {
 int* heapy_int = new int;
 *heapy_int = x;
 return heapy_int;
}

Point* AllocatePoint(int x, int y) {
 Point* heapy_pt = new Point(x,y);
 return heapy_pt;
}

heappoint.cc

20

CSE333, Winter 2025L13: C++ Heap

new/delete Behavior

v new behavior:
§ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

§ If no initialization specified, it will use default constructor for
objects and uninitialized (“mystery”) data for primitives

§ You don’t need to check that new returns nullptr
• When an error is encountered, an exception is thrown (that we won’t

worry about)

v delete behavior:
§ If you delete already deleted memory, then you will get

undefined behavior (same as when you double free in C)

21

CSE333, Winter 2025L13: C++ Heap

Dynamically Allocated Arrays

v To dynamically allocate an array:
§ Default initialize:

v To dynamically deallocate an array:
§ Use delete[] name;
§ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t
always tell if name* was allocated with new type[size];
or new type;
– Especially inside a function where a pointer parameter could point to a

single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior

type* name = new type[size];

delete[] name;

22

CSE333, Winter 2025L13: C++ Heap

Arrays Example (primitive)
#include "Point.h"
using namespace std;

int main() {
 int stack_int;
 int* heap_int = new int;
 int* heap_init_int = new int(12);

 int stack_arr[10];
 int* heap_arr = new int[10];

 int* heap_init_arr = new int[10](); // uncommon usage
 int* heap_init_error = new int[10](12); // bad syntax
 int* heap_init_error = new int[10]{12}; // C++11 allows
 ... // (uncommon)

 delete heap_int; //
 delete heap_init_int; //
 delete heap_arr; //
 delete[] heap_init_arr; //

 return 0;
}

23

arrays.cc

ok
ok
error – must be delete[]
ok

CSE333, Winter 2025L13: C++ Heap

Arrays Example (class objects)
#include "Point.h"
using namespace std;

int main() {
 ...

 Point stack_point(1, 2);
 Point* heap_point = new Point(1, 2);

 Point* err_pt_arr = new Point[10];// bug-no Point() ctr

 Point* err2_pt_arr = new Point[10](1,2); // bad syntax
 Point* err2_pt_arr = new Point[10]{1,2}; // C++11 allows
 ... // (uncommon)

 delete heap_point;

 ...

 return 0;
}

24

arrays.cc

CSE333, Winter 2025L13: C++ Heap

malloc vs. new
malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Allocated memory for anything arrays, structs, objects,
primitives

Returns a void*
(should be cast)

appropriate pointer type
(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

25

CSE333, Winter 2025L13: C++ Heap

Heap Member Example

v Let’s build a class to simulate some of the functionality of
the C++ string
§ Internal representation: c-string to hold characters

v What might we want to implement in the class?

27

CSE333, Winter 2025L13: C++ Heap

Str Class Walkthrough

28

#include <iostream>
using namespace std;

class Str {
 public:
 Str(); // default ctor
 Str(const char* s); // c-string ctor
 Str(const Str& s); // copy ctor
 ~Str(); // dtor

 int length() const; // return length of string
 char* c_str() const; // return a copy of st_ on heap
 void append(const Str& s);

 Str& operator=(const Str& s); // string assignment

 friend std::ostream& operator<<(std::ostream& out, const Str& s);

 private:
 char* st_; // c-string on heap (terminated by '\0')
}; // class Str

Str.h

CSE333, Winter 2025L13: C++ Heap

Str Example Walkthrough

See:
Str.h

Str.cc

strtest.cc

v Look carefully at assignment operator=
§ self-assignment test is especially important here

30

CSE333, Winter 2025L13: C++ Heap

Extra Exercise #1

v Write a C++ function that:
§ Uses new to dynamically allocate an array of strings and uses
delete[] to free it

§ Uses new to dynamically allocate an array of pointers to strings
• Assign each entry of the array to a string allocated using new

§ Cleans up before exiting
• Use delete to delete each allocated string
• Uses delete[] to delete the string pointer array
• (whew!)

31

