
CSE333, Winter 2025L09: Low-Level I/O (POSIX)

Low-Level I/O – the POSIX Layer
CSE 333 Winter 2025

Instructor: Hal Perkins

Teaching Assistants:
Lainey Jeon Hannah Jiang Irene Lau
Nathan Li Janani Raghavan Sean Siddens
Deeksha Vatwani Yiqing Wang Wei Wu
Jennifer Xu

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

Administrivia
v HW1 due tomorrow night

§ Any last-minute surprises? Questions?

v No exercise due Friday morning!

v Sections tomorrow: POSIX I/O and reading directories
v Next exercise: find text files in directory and print contents

§ Based on section stuff and is a warmup for hw2
§ Out tomorrow after sections; due Monday morning

v Friday: HW2 out; demo in class, starter code pushed to repos
by beginning of weekend

2

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

Exercises, hw, and code quality
v In the initial set of exercises, we’ve been focusing on trying to

provide helpful feedback as we get better at writing high-quality
code, without necessarily affecting final scores. But there are a few
things that should be fixed by now but are persisting, and will be
more of a problem if they continue. A couple of particular ones:
§ Use cpplint.py to check code and fix things it catches (except for known

exceptions to the rules, like matching library functions that use long ints)
§ Match the Google Style guide for conventions like variable naming, using

2 spaces (only) for indenting, etc.
§ All functions must be declared in a file before any function definitions –

either in a #included header for “public” things, or at the top of the file for
local “private” things, and there need to be appropriate comments
specifying how the function works

§ Run valgrind to check for memory bugs
v Overall, keep up the good work – we’re seeing lots of improvement

and great code that continues to get better
3

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

Lecture Outline

v POSIX Lower-Level I/O

4

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

Remember This Picture?

v Your program can access many
layers of APIs:
§ C standard library

• Some are just ordinary functions
(<string.h>, for example)

• Some also call OS-level (POSIX)
functions (<stdio.h>, for example)

§ POSIX compatibility API
• C-language interface to OS system

calls (fork(), read(), etc.)

§ Underlying OS system calls
• Assembly language J

5

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

C Standard Library File I/O

v So far you’ve used the C standard library to access files
§ Use a provided FILE* stream abstraction
§ fopen(), fread(), fwrite(), fclose(), fseek()

v These are convenient and portable
§ They are buffered
§ They are implemented using lower-level OS calls

6

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

Lower-Level File Access

v Most UNIX-en support a common set of lower-level file
access APIs: POSIX – Portable Operating System Interface
§ open(), read(), write(), close(), lseek()

• Similar in spirit to their f*() counterparts from C std lib
• Lower-level and unbuffered compared to their counterparts
• Also less convenient

§ We will have to use these to read file system directories and for
network I/O, so we might as well learn them now

7

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

open()/close()

v To open a file:
§ Pass in the filename and access mode

• Similar to fopen()

§ Get back a “file descriptor”
• Similar to FILE* from fopen(), but is just an int
• Defaults: 0 is stdin, 1 is stdout, 2 is stderr

#include <fcntl.h> // for open()
#include <unistd.h> // for close()
 ...
 int fd = open("foo.txt", O_RDONLY);
 if (fd == -1) {
 perror("open failed");
 exit(EXIT_FAILURE);
 }
 ...
 close(fd);

8

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

Reading from a File
v ssize_t read(int fd, void* buf, size_t count);

§ Returns the number of bytes read
• Might be fewer bytes than you requested (!!!)
• Returns 0 if you’re already at the end-of-file
• Returns -1 on error

§ read has some surprising error modes…

ssize_t read(int fd, void* buf, size_t count);

9

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

Read error modes
v ssize_t read(int fd, void* buf, size_t count);

§ On error, read returns -1 and sets the global errno variable

§ You need to check errno to see what kind of error happened
• EBADF: bad file descriptor
• EFAULT: output buffer is not a valid address
• EINTR: read was interrupted, please try again (ARGH!!!! 😤😠)
• And many others…

ssize_t read(int fd, void* buf, size_t count);

10

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

One way to read() 𝑛 bytes

12

int fd = open(filename, O_RDONLY);
char* buf = ...; // buffer of appropriate size
int bytes_left = n;
int result;

while (bytes_left > 0) {
 result = read(fd, buf + (n - bytes_left), bytes_left);
 if (result == -1) {
 if (errno != EINTR) {
 // a real error happened, so return an error result
 }
 // EINTR happened, so do nothing and try again
 continue;
 } else if (result == 0) {
 // EOF reached, so stop reading
 break;
 }
 bytes_left -= result;
}

close(fd);

readN.c

CSE333, Winter 2025L09: Low-Level I/O (POSIX)

Other Low-Level Functions

v Read man pages to learn about:
§ write() – write data
§ fsync() – flush data to the underlying device
§ opendir(), readdir(), closedir() – deal with directory

listings
• Make sure you read the section 3 version (e.g. man 3 opendir)

v A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

v More in sections this week…. (as in, tomorrow!)

13

http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

