
CSE333, Winter 2025L08: File I/O, System Calls

Intro to File I/O, System Calls
CSE 333 Winter 2025

Instructor: Hal Perkins

Teaching Assistants:
Lainey Jeon Hannah Jiang Irene Lau
Nathan Li Janani Raghavan Sean Siddens
Deeksha Vatwani Yiqing Wang Wei Wu
Jennifer Xu

CSE333, Winter 2025L08: File I/O, System Calls

Administrivia

v I/O and System Calls – this lecture and next
§ Essential material for next part of the project (hw2)

v Exercise 6 out today, due next Wednesday morning 1/22
§ C standard library File I/O practice
§ There is no exercise 5 this quarter – skipping from ex4 to ex6 because of

holidays (ex5 was header guards and static fcns, which we folded into
ex4, and makefiles, which we didn’t – we’ll get to that later)

v Homework 1 due next Thursday 1/23 at 11:59 pm
§ Submit via GitLab (i.e., commit/push changes, then push tag(s), then

check your work)
§ Exercise 7 will be released late next week (based on section material),

due the following Monday (no exercise due Fri. 1/24)

v No class Monday – MLK holiday
2

CSE333, Winter 2025L08: File I/O, System Calls

Code Quality
v Code quality (“style”) really matters – and not just for homework
v Rule 0: The reader’s time is much more important than the writer’s

§ Good comments are essential, clarity/understandability is critical
• Good = what does the reader need to know to understand / modify the code that

can’t be discovered by reading the code itself

§ Good comments ultimately save the writer’s time, too!

v Rule 1: Match existing code
v Rule 2: Make use of the tools provided to you

§ Compiler: fix the warnings!

§ Valgrind: fix all of them unless you know why it’s not an error
§ style checkers: fix most things; be sure you understand anything you don’t

fix and can justify it (use of long, types in sizeof(), readdir, not much else –
ask on discussion board if not sure)

5

CSE333, Winter 2025L08: File I/O, System Calls

Lecture Outline

v File I/O with the C standard library
v System Calls

6

CSE333, Winter 2025L08: File I/O, System Calls

Remember This Picture?

7

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

A brief
diversion...

CSE333, Winter 2025L08: File I/O, System Calls

File I/O

v We’ll start by using C’s standard library
§ These functions are part of glibc on Linux
§ They are implemented using Linux system calls

v C’s stdio defines the notion of a stream
§ A way of reading or writing a sequence of characters to and from

a device
§ Can be either text or binary; Linux does not distinguish
§ Is buffered by default; libc reads ahead of your program
§ Three streams provided by default: stdin, stdout, stderr

• You can open additional streams to read and write to files
§ C streams are manipulated with a FILE* pointer, which is

defined in stdio.h
8

CSE333, Winter 2025L08: File I/O, System Calls

C Stream Functions

v Some stream functions (complete list in stdio.h):

§ FILE* fopen(filename, mode);
• Opens a stream to the specified file in specified file access mode

§ int fclose(stream);
• Closes the specified stream (and file)

§ x
• Writes an array of count elements of size bytes from ptr to stream

§
• Reads an array of count elements of size bytes from stream to ptr

9

FILE* fopen(filename, mode);

int fclose(stream);

size_t fwrite(ptr, size, count, stream);

size_t fread(ptr, size, count, stream);

CSE333, Winter 2025L08: File I/O, System Calls

C Stream Functions

v Formatted I/O stream functions (more in in stdio.h):

§ int fprintf(stream, format, ...);
• Writes a formatted C string
– printf(...); is equivalent to fprintf(stdout, ...);

§ int fscanf(stream, format, ...);
• Reads data and stores data matching the format string

10

int fprintf(stream, format, ...);

int fscanf(stream, format, ...);

CSE333, Winter 2025L08: File I/O, System Calls

Error Checking/Handling

v Some error functions (complete list in stdio.h):

§ void perror(message);
• Prints message and error message related to errno to stderr

§ int ferror(stream);
• Checks if the error indicator associated with the specified stream is

set

§ void clearerr(stream);
• Resets error and eof indicators for the specified stream

11

int ferror(stream);

int clearerr(stream);

void perror(message);

CSE333, Winter 2025L08: File I/O, System Calls

C Streams Example

12

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
 FILE *fin, *fout;
 char readbuf[READBUFSIZE]; // space for input data
 size_t readlen;

 if (argc != 3) {
 fprintf(stderr, "usage: ./cp_example infile outfile\n");
 return EXIT_FAILURE; // defined in stdlib.h
 }

 // Open the input file
 fin = fopen(argv[1], "rb"); // "rb" -> read, binary mode
 if (fin == NULL) {
 fprintf(stderr, "%s -- ", argv[1]);
 perror("fopen for read failed");
 return EXIT_FAILURE;
 }
 ...

cp_example.c

CSE333, Winter 2025L08: File I/O, System Calls

C Streams Example

13

int main(int argc, char** argv) {

 ... // previous slide’s code

 // Open the output file
 fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
 if (fout == NULL) {
 fprintf(stderr, "%s -- ", argv[2]);
 perror("fopen for write failed");
 return EXIT_FAILURE;
 }

 // Read from the file, write to fout
 while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
 if (fwrite(readbuf, 1, readlen, fout) < readlen) {
 perror("fwrite failed");
 return EXIT_FAILURE;
 }
 }

 ... // next slide’s code

}

cp_example.c

CSE333, Winter 2025L08: File I/O, System Calls

C Streams Example

14

int main(int argc, char** argv) {

 ... // code from previous 2 slides

 // Test to see if we encountered an error while reading
 if (ferror(fin)) {
 perror("fread failed");
 return EXIT_FAILURE;
 }

 fclose(fin);
 fclose(fout);

 return EXIT_SUCCESS;
}

cp_example.c

CSE333, Winter 2025L08: File I/O, System Calls

Buffering

v By default, stdio uses buffering for streams:

§ Data written by fwrite() is copied into a buffer allocated by
stdio inside your process’ address space

§ As some point, the buffer will be “drained” into the destination:
• When you explicitly call fflush() on the stream
• When the buffer size is exceeded (often 1024 or 4096 bytes)
• For stdout to console, when a newline is written (“line buffered”) or

when some other function tries to read from the console
• When you call fclose() on the stream
• When your process exits gracefully (exit() or return from
main())

15

CSE333, Winter 2025L08: File I/O, System Calls

Why Buffer?

v Performance – avoid disk accesses
§ Group many small writes

into a single larger write

§ Disk Latency = 😱😱😱
(Jeff Dean from LADIS ’09)

v Convenience – nicer API
§ We’ll compare

C’s fread() with
POSIX’s read() shortly

16

CSE333, Winter 2025L08: File I/O, System Calls

Why NOT Buffer?

v Reliability – the buffer needs to be flushed
§ Loss of computer power = loss of data
§ “Completion” of a write (i.e. return from fwrite()) does not

mean the data has actually been written
• What if you signal another process to read the file you just wrote to?

v Performance – buffering takes time
§ Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth
§ Can potentially slow down high-performance applications, like a

web server or database (“zero-copy”)

v When is buffering faster? Slower? 17

CSE333, Winter 2025L08: File I/O, System Calls

Disabling C’s Buffering

v Explicitly turn off with setbuf(stream, NULL)
§ But potential performance problems: lots of small writes triggers

lots of slower system calls instead of a single system call that
writes a large chunk

v Use POSIX APIs instead of C’s
§ No buffering is done at the user level
§ We’ll see these soon

v But… what about the layers below?
§ The OS caches disk reads and writes in the file system buffer

cache
§ Disk controllers have caches too!

18

CSE333, Winter 2025L08: File I/O, System Calls

Lecture Outline

v File I/O with the C standard library
v System Calls

19

CSE333, Winter 2025L08: File I/O, System Calls

What’s an OS?

20

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Winter 2025L08: File I/O, System Calls

What’s an OS?

v Software that:
§ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not
• OS must be ported to new hardware; user-level programs are

portable

§ Manages (allocates, schedules, protects) hardware resources
• Decides which programs can access which files, memory locations,

pixels on the screen, etc. and when

§ Abstracts away messy hardware devices
• Provides high-level, convenient, portable abstractions

(e.g. files, disk blocks)

21

CSE333, Winter 2025L08: File I/O, System Calls

OS: Abstraction Provider

v The OS is the “layer below”
§ A module that your program can call (with system calls)
§ Provides a powerful OS API – POSIX, Windows, etc.

22

a process running
your program

OS

OS
API

fil
e

sy
st

em

ne
tw

or
k

st
ac

k

vi
rt

ua
l m

em
or

y

pr
oc

es
s m

gm
t.

…
 e

tc
 …

File System
• open(), read(), write(), close(), …

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(), …

Process Management
• fork(), wait(), nice(), …

CSE333, Winter 2025L08: File I/O, System Calls

OS: Protection System

v OS isolates process from each other
§ But permits controlled sharing between them

• Through shared name spaces (e.g. file names)

v OS isolates itself from processes
§ Must prevent processes from accessing the

hardware directly

v OS is allowed to access the hardware
§ User-level processes run with the CPU

(processor) in unprivileged mode
§ The OS runs with the CPU in privileged mode
§ User-level processes invoke system calls to

safely enter the OS

23

OS
(trusted)

HW (trusted)

Pr
oc

es
s A

(u
nt

ru
st

ed
)

Pr
oc

es
s B

(u
nt

ru
st

ed
)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

CSE333, Winter 2025L08: File I/O, System Calls

System Call Trace

24

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s B

(u
nt

ru
st

ed
)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

A CPU (thread of
execution) is running user-

level code in Process A;
the CPU is set to

unprivileged mode.

CSE333, Winter 2025L08: File I/O, System Calls

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s B

(u
nt

ru
st

ed
)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

System Call Trace

25

Code in Process A invokes
a system call; the

hardware then sets the
CPU to privileged mode
and traps into the OS,

which invokes the
appropriate system call

handler.

sy
st

em
 c

al
l

CSE333, Winter 2025L08: File I/O, System Calls

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s B

(u
nt

ru
st

ed
)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

System Call Trace

26

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged

instructions that interact
directly with hardware

devices like disks.

CSE333, Winter 2025L08: File I/O, System Calls

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s B

(u
nt

ru
st

ed
)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

System Call Trace

27

sy
st

em
 c

al
l r

et
ur

n

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

CSE333, Winter 2025L08: File I/O, System Calls

OS
(trusted)

HW (trusted)
Pr

oc
es

s A
(u

nt
ru

st
ed

)

Pr
oc

es
s B

(u
nt

ru
st

ed
)

Pr
oc

es
s C

(u
nt

ru
st

ed
)

Pr
oc

es
s D

(t
ru

st
ed

)

System Call Trace

28

The process continues
executing whatever

code is next after the
system call invocation.

Useful reference:
CSPP § 8.1–8.3
(the 351 book)

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux

v A more accurate picture:
§ Consider a typical Linux process
§ Its thread of execution can be in one

of several places:
• In your program’s code
• In glibc, a shared library containing

the C standard library, POSIX,
support, and more

• In the Linux architecture-independent
code

• In Linux x86-64 code

29

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux
system calls

Linux kernel

Your program

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux

v Some routines your program
invokes may be entirely handled
by glibc without involving the
kernel
§ e.g. strcmp() from stdio.h

§ There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)
• But after symbols are resolved,

invoking glibc routines is basically
as fast as a function call within your
program itself!

30

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux kernel

Your program

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux

v Some routines may be handled
by glibc, but they in turn
invoke Linux system calls
§ e.g. POSIX wrappers around Linux
syscalls
• POSIX readdir() invokes the

underlying Linux readdir()

§ e.g. C stdio functions that read
and write from files
• fopen(), fclose(), fprintf()

invoke underlying Linux open(),
close(), write(), etc.

31

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux kernel

Your program

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux

v Your program can choose to
directly invoke Linux system calls
as well
§ Nothing is forcing you to link with
glibc and use it

§ But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties
• (And won’t be portable to non-Unix

systems like Windows that run
standard C on top of their own,
different syscalls)

32

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux kernel

Your program

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux

v Let’s walk through how a Linux
system call actually works
§ We’ll assume 32-bit x86 using the

modern SYSENTER / SYSEXIT x86
instructions
• x86-64 code is similar, though details

always change over time, so take this
as an example – not a debugging
guide

33

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

Linux kernel

Your program

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux

Remember our
process address
space picture?
§ Let’s add some

details:

34

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux
Process is executing your
program code

35

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux
Process calls into a
glibc function
§ e.g. fopen()
§ We’ll ignore the

messy details of
loading/linking
shared libraries

36

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux
glibc begins the process
of invoking a Linux system
call
§ glibc’s

fopen() likely
invokes Linux’s
open() system
call

§ Puts the system call #
and arguments into
registers

§ Uses the call x86
instruction to call into
the routine
__kernel_vsyscall
located in linux-
gate.so 37

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux

linux-gate.so is a
vdso
§ A virtual

dynamically-linked
shared
object

§ Is a kernel-provided
shared library that is
plunked into a process’
address space

§ Provides the intricate
machine code needed to
trigger a system call

38

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux
linux-gate.so
eventually invokes
the SYSENTER x86
instruction
§ SYSENTER is x86’s “fast

system call” instruction
• Causes the CPU to raise

its privilege level

• Traps into the Linux
kernel by changing the
SP, IP to a previously-
determined location

• Changes some
segmentation-related
registers (see CSE451)

39

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux
The kernel begins
executing code at
the SYSENTER
entry point
§ Is in the architecture-

dependent part of Linux
§ It’s job is to:

• Look up the system call
number in a system call
dispatch table

• Call into the address
stored in that table entry;
this is Linux’s system call
handler
– For open(), the

handler is named
sys_open, and is
system call #5 40

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux
The system call
handler executes
§ What it does is

system-call specific
§ It may take a long time to

execute, especially if it
has to interact with
hardware
• Linux may choose to

context switch the CPU
to a different runnable
process

41

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux
Eventually, the
system call handler
finishes
§ Returns back to the

system call entry point
• Places the system call’s

return value in the
appropriate register

• Calls SYSEXIT to return
to the user-level code

42

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

SP
IP

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux
SYSEXIT transitions the
processor back to user-
mode code
§ Restores the

IP, SP to
user-land values

§ Sets the CPU
back to
unprivileged mode

§ Changes some
segmentation-related
registers (see CSE451)

§ Returns the processor
back to glibc

43

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Winter 2025L08: File I/O, System Calls

Details on x86/Linux
glibc continues to
execute
§ Might execute more

system calls
§ Eventually

returns back to
your program code

44

architecture-independent code

architecture-dependent code

glibc

C standard
library POSIX

CPU
Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

SP

IP

unpriv

CSE333, Winter 2025L08: File I/O, System Calls

strace

v A useful Linux utility that shows the sequence of system
calls that a process makes:

45

bash$ strace ls 2>&1 | less
execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0
brk(NULL) = 0x15aa000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x7f03bb741000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0
mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000
close(3) = 0
open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"...,

832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0
mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x7f03bb2fa000
mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0
mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000
... etc ...

CSE333, Winter 2025L08: File I/O, System Calls

If You’re Curious

v Download the Linux kernel source code
§ Available from http://www.kernel.org/

v man, section 2: Linux system calls
§ man 2 intro

§ man 2 syscalls

v man, section 3: glibc/libc library functions
§ man 3 intro

v The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

46

http://www.kernel.org/

CSE333, Winter 2025L08: File I/O, System Calls

Extra Exercise #1

v Write a program that:
§ Uses argc/argv to receive the name of a text file
§ Reads the contents of the file a line at a time
§ Parses each line, converting text into a uint32_t
§ Builds an array of the parsed uint32_t’s
§ Sorts the array
§ Prints the sorted array to stdout

v Hint: use man to read about
getline, sscanf, realloc,
and qsort

47

bash$ cat in.txt
1213
3231
000005
52
bash$./extra1 in.txt
5
52
1213
3231
bash$

CSE333, Winter 2025L08: File I/O, System Calls

Extra Exercise #2

v Write a program that:
§ Loops forever; in each loop:

• Prompt the user to
input a filename

• Reads a filename
from stdin

• Opens and reads
the file

• Prints its contents
to stdout in the format shown:

v Hints:
§ Use man to read about fgets
§ Or, if you’re more courageous, try man 3 readline to learn about

libreadline.a and Google to learn how to link to it
48

00000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5
00000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53
00000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d
00000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00
00000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09
00000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c
00000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68
00000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00
00000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88
00000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a
000000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b
... etc ...

