W UNIVERSITY of WASHINGTON

Intro to File 1/O, System Calls

CSE 333 Winter 2025

Instructor: Hal Perkins

Teaching Assistants:
Lainey Jeon Hannah Jiang

Nathan Li Janani Raghavan
Deeksha Vatwani Yiging Wang

Jennifer Xu

LO8: File 1/0, System Calls

Irene Lau
Sean Siddens
Wei Wu

CSE333, Winter 2025

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Administrivia

» 1/O and System Calls — this lecture and next

" Essential material for next part of the project (hw?2)

+ Exercise 6 out today, due next Wednesday morning 1/22
= Cstandard library File I/O practice

" There is no exercise 5 this quarter — skipping from ex4 to ex6 because of
holidays (ex5 was header guards and static fcns, which we folded into
ex4, and makefiles, which we didn’t — we’ll get to that later)

Homework 1 due next Thursday 1/23 at 11:59 pm

= Submit via GitLab (i.e., commit/push changes, then push tag(s), then
check your work)

>

= Exercise 7 will be released late next week (based on section material),
due the following Monday (no exercise due Fri. 1/24)

No class Monday — MLK holiday

>

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Code Quality

» Code quality (“style”) really matters — and not just for homework

» Rule O: The reader’s time is much more important than the writer’s

= Good comments are essential, clarity/understandability is critical

« Good = what does the reader need to know to understand / modify the code that
can’t be discovered by reading the code itself

" Good comments ultimately save the writer’s time, too!

’0

Rule 1: Match existing code

’0

Rule 2: Make use of the tools provided to you

= Compiler: fix the warnings!
= Valgrind: fix all of them unless you know why it’s not an error

= style checkers: fix most things; be sure you understand anything you don’t
fix and can justify it (use of long, types in sizeof(), readdir, not much else —
ask on discussion board if not sure)

w UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Lecture Outline

+ File 1/0 with the C standard library
+» System Calls

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Remember This Picture?

A brief
diversion...

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

File 1/O

+» We'll start by using C’s standard library

4

= These functions are part of g1l ibc on Linux
" They are implemented using Linux system calls

C's stdio defines the notion of a stream

= A way of reading or writing a sequence of characters to and from
a device

= Can be either text or binary; Linux does not distinguish
= |s buffered by default; 1ibc reads ahead of your program
" Three streams provided by default: stdin, stdout, stderr

- You can open additional streams to read and write to files

= Cstreams are manipulated with a FTILE * pointer, which is
definedin stdio.h

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

C Stream Functions

%~ Some stream functions (complete list in stdio.h):

-[FILE* fopen (filename, mode) ; }

- Opens a stream to the specified file in specified file access mode

'{int fclose(stream);]

 Closes the specified stream (and file)

-[size_t fwrite (ptr, size, count, stream);}

- Writes an array of count elements of size bytes from ptr to stream

.[size_t fread (ptr, size, count, stream); }

- Reads an array of count elements of size bytes from stream to ptr

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

C Stream Functions

+» Formatted I/O stream functions (more inin stdio.h):

-[int fprintf (stream, format, ...);]

- Writes a formatted C string
— printf (...); isequivalentto fprintf (stdout, ...);

-[int fscanf (stream, format, ...);]

- Reads data and stores data matching the format string

10

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Error Checking/Handling

+» Some error functions (complete list in stdio.h):

l{void perror(message);}

- Prints message and error message related to errno to stderr

-{int ferror(stream);]

- Checks if the error indicator associated with the specified stream is
set

-[int clearerr(stream);]

- Resets error and eof indicators for the specified stream

11

C Streams Example

cp_example.c

[#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
FILE *fin, *fout;
char readbuf [READBUFSIZE]; // space for input data
size t readlen;

}

// Open the input file
fin = fopen(argv([1l], "rb"); // "rb" -> read, binary mode
1if (fin == NULL) {
fprintf (stderr, "%$s -- ", argvl[l]):
perror ("fopen for read failed");
return EXIT FAILURE;
}

1t (argc !'= 3) {
fprintf (stderr, "usage: ./cp example infile outfile\n");
return EXIT FAILURE; // defined in stdlib.h

N\

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

12

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

C Streams Example

7

cp_example.c

int main(int argc, char** argv) {)

// previous slide’s code

// Open the output file
fout = fopen (argv[2], "wb"); // "wb" -> write, binary mode
1f (fout == NULL) {

fprintf (stderr, "%$s -- ", argv[2]);

perror ("fopen for write failed");

return EXIT FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread (readbuf, 1, READBUFSIZE, fin)) > 0) {
1f (fwrite (readbuf, 1, readlen, fout) < readlen) {

perror ("fwrite failed");
return EXIT FAILURE;

// next slide’s code

LO8: File 1/0, System Calls

CSE333, Winter 2025

W UNIVERSITY of WASHINGTON

C Streams Example
cp_example.c

int main(int argc, char** argv) {
// code from previous 2 slides

// Test to see 1if we encountered an error while reading

1f (ferror (fin)) {
perror ("fread failed");
return EXIT FAILURE;

}

fclose (fin) ;
fclose (fout) ;

return EXIT SUCCESS;

14

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Buffering

+ By default, stdio uses buffering for streams:

= Data written by fwrite () is copied into a buffer allocated by
stdio inside your process’ address space

= As some point, the buffer will be “drained” into the destination:
- When you explicitly call ££1ush () on the stream
- When the buffer size is exceeded (often 1024 or 4096 bytes)

- For stdout to console, when a newline is written (“line buffered”) or
when some other function tries to read from the console

« Whenyou call fclose () on the stream

- When your process exits gracefully (exit () or return from
main ())

15

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Why Buffer?

« Performance — avoid disk accesses

= Group many small writes

: : : Numbers Everyone Should Know
into a single larger write

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
" DlSk Latency - Mutex lock/unlock 25 ms
Main memory reference 100 ns
(Jeff Dean frOm LADIS ’09) Compress 1K bytes with Zippy 3,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
H . Disk seek 10,000,000 ns
o Convenlence — nlcer API Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

= We’'ll compare
C's fread () with
POSIX’s read () shortly

16

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Why NOT Buffer?

L)

+ Reliability — the buffer needs to be flushed

" Loss of computer power = |loss of data

= “Completion” of a write (i.e. return from £fwrite ()) does not
mean the data has actually been written

- What if you signal another process to read the file you just wrote to?

4

+» Performance — buffering takes time

= Copying data into the stdio buffer consumes CPU cycles and
memory bandwidth

= Can potentially slow down high-performance applications, like a
web server or database (“zero-copy”)

4

» When is buffering faster? Slower?

17

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Disabling C’s Buffering

+ Explicitly turn off with setbuf (stream, NULL)

= But potential performance problems: lots of small writes triggers
lots of slower system calls instead of a single system call that
writes a large chunk

«» Use POSIX APIs instead of C’s

= No buffering is done at the user level

= We'll see these soon

+» But... what about the layers below?

" The OS caches disk reads and writes in the file system buffer
cache

= Disk controllers have caches too!

18

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Lecture Outline

+ File 1/0 with the C standard library
+» System Calls

19

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

What’s an OS?

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

20

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

CSE333, Winter 2025

What’s an OS?

« Software that:

= Directly interacts with the hardware
- OS s trusted to do so; user-level programs are not

- OS must be ported to new hardware; user-level programs are
portable

= Manages (allocates, schedules, protects) hardware resources

- Decides which programs can access which files, memory locations,
pixels on the screen, etc. and when

= Abstracts away messy hardware devices

- Provides high-level, convenient, portable abstractions
(e.g. files, disk blocks)

21

w UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

OS: Abstraction Provider

«» The OS is the “layer below”

= A module that your program can call (with system calls)
" Provides a powerful OS APl — POSIX, Windows, etc.

File System
* open(), read(), write(), close(), ...

Network Stack
« connect(), listen(), read(), write(), ...

Virtual Memory
* brk(), shm_open(), ...

Process Management
* fork(), wait(), nice(), ...

|
|
£ |
()]
= |
(Vp)
> |
D
D
S |
|
|

virtual memory
process mgmt.

"4
o
O
i)
s
=
.
S
)
Q
c

... etc ...

22

w UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

OS: Protection System

+» OS isolates process from each other

= But permits controlled sharing between them

- Through shared name spaces (e.g. file names)

+ OS isolates itself from processes

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

= Must prevent processes from accessing the
hardware directly

«» OSis allowed to access the hardware

OS
= User-level processes run with the CPU (tFUStEd)

(processor) in unprivileged mode

®" The OS runs with the CPU in privileged mode
= User-level processes invoke system calls to HW (trUSted)
safely enter the OS

23

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

System Call Trace

A CPU (thread of
execution) is running user-
level code in Process A;
the CPU is set to
unprivileged mode.

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

N

ON
(trusted)

24

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

System Call Trace

Code in Process A invokes
a system call; the
hardware then sets the
CPU to privileged mode
and traps into the OS,
which invokes the
appropriate system call
handler.

system call

o

0

S
5>

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

ON
(trusted)

25

CSE333, Winter 2025

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

System Call Trace

Because the CPU
executing the thread
that’s in the OS is in

privileged mode, it is able
to use privileged
instructions that interact
directly with hardware
devices like disks.

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

ON
(trusted)

AN AN AN\
HW (trusted)

26

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

System Call Trace

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

system call return

OS

(2) Returns out of the system (trusted)

call back to the user-level code

in Process A.
HW (trusted)

27

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

System Call Trace

Process A
(untrusted)
Process B
(untrusted)
Process C
(untrusted)
Process D
(trusted)

The process continues
executing whatever
code is next after the
system call invocation. 0S

(trusted)

Useful reference: HW (trusted)
CSPP § 8.1-8.3

(the 351 book)

N

28

CSE333, Winter 2025

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

<+ A more accurate picture:

= Consider a typical Linux process

" |ts thread of execution can be in one
of several places:

In your program’s code

In glibc, ashared library containing
the C standard library, POSIX,
support, and more

In the Linux architecture-independent
code

In Linux x86-64 code

C standard
library

glibc

architecture-dependent code

Linux kernel

29

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

+ Some routines your program
invokes may be entirely handled

by glibc without involving the
kernel

" e.g.strcmp () fromstdio.h

" There is some initial overhead when
invoking functions in dynamically
linked libraries (during loading)

- But after symbols are resolved,
invoking gl ibc routines is basically

as fast as a function call within your
program itself!

CSE333, Winter 2025

C standard
library

glibc

architecture-independent code

architecture-dependent code

Linux kernel

30

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

+» Some routines may be handled
by glibc, but they in turn
invoke Linux system calls
= e.g. POSIX wrappers around Linux
syscalls

« POSIX readdir () invokes the
underlying Linux readdir ()

= e.g. C stdio functions that read
and write from files

- fopen (), fclose (), fprintf ()
invoke underlying Linux open (),
close(),write (), etc.

CSE333, Winter 2025

C standard
library

glibc

architecture-dependent code

Linux kernel

31

w UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Details on x86/Linux

+ Your program can choose to
directly invoke Linux system calls

as well C standard
library

= Nothing is forcing you to link with glibc
glibc and use it
= But relying on directly-invoked Linux
system calls may make your
program less portable across UNIX
varieties
- (And won’t be portable to non-Unix
systems like Windows that run
standard C on top of their own, Linux kernel
different syscalls)

architecture-dependent code

32

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

+ Let’s walk through how a Linux
system call actually works

= We'll assume 32-bit x86 using the
modern SYSENTER / SYSEXIT x86
instructions

- x86-64 code is similar, though details
always change over time, so take this

as an example — not a debugging
guide

CSE333, Winter 2025

Your program

C standard
library

glibc

architecture-dependent code

Linux kernel

33

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Details on x86/Linux

OXFFFFFFFF

Your program

Remember our
process address

space picture? C standard
library

" Let’s add some glibc

details:

architecture-independent code

architecture-dependent code

Linux kernel

CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Details on x86/Linux

OXFFFFFFFF

Your program

Process is executing your
program code

C standard
library
SR .
glibc
architecture-independent code
architecture-dependent code
IR Linux kernel

unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Details on x86/Linux

OXFFFFFFFF

Your program

Process calls into a

glibc function

" e.g. fopen ()

= We'llignore the
messy details of .

>y el glibc

loading/linking
shared libraries

C standard
library %

architecture-independent code

architecture-dependent code

Linux kernel

unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

glibc begins the process
of invoking a Linux system

Details on x86/Linux

OXFFFFFFFF

Your program

C standard %

glibcs kel library
fopen () likely gp .
invokes Linux’s g|IbC

open () system
call

Puts the system call #

and arguments into architecture-independent code
registers

Uses the call x86

instruction to call into architecture-dependent code
the routine

Linux kernel
kernel vsyscall

located in 1inux- unpriv CPU
gate.so 0x00000000 37

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

linux-gate.soisa
vdso

Details on x86/Linux

OXFFFFFFFF

Your program

IR

C standard
A virtual library %

dynamically-linked SI?
shared
object

glibc

Is a kernel-provided

shared library that is
plunked into a process’ architecture-independent code

address space

Provides the intricate
machine code needed to architecture-dependent code

trigger a system call

Linux kernel

unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Details on x86/Linux

OxFFFFFFFF Your program

linux-gate.so
eventually invokes P
the SYSENTER x86
instruction

" SYSENTER is x86’s “fast
system call” instruction

C standard
library

glibc

« Causes the CPU to raise
its privilege level

« Traps into the Linux
kernel by changing the architecture-independent code
SP, IP to a previously-
determined location

« Changes some
segmentation-related
registers (see CSE451)

%architectu re-dependent code

Linux kernel

CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Details on x86/Linux

OXFFFFFFFF

The kernel begins
executing code at P
the SYSENTER

entry point

" |sin the architecture-
dependent part of Linux

" |t’s job is to:

Your program

C standard
library

glibc

Look up the system call

number in a system call %
dispatch table architecture-independent code

Call into the address
stored in that table entry;
this is Linux’s system call
handler
— For open (), the Linux kernel

handler is named

sys open, andis CPU

system call #5 0x00000000 40

architecture-dependent code

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

The system call
handler executes P

Details on x86/Linux

OxFFFFFFFF Your program

What it does is

- C standard
system-call specific

library
It may take a long time to

execute, especially if it
has to interact with
hardware

glibc

« Linux may choose to %
context switch the CPU architecture-independent code
to a different runnable

process

architecture-dependent code

Linux kernel

CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Details on x86/Linux

OxFFFFFFFF Your program

Eventually, the
system call handler P

finishes
C standard

= Returns back to the library

system call entry point)

« Places the system call’s glle
return value in the
appropriate register

« Calls SYSEXIT to return

to the user-level code architecture-independent code

%architectu re-dependent code

Linux kernel

CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

SYSEXIT transitions the
processor back to user-
mode code

Details on x86/Linux

OXFFFFFFFF

Your program

Restores the
IP, SP to SPE
user-land values

Sets the CPU

back to 1
unprivileged mode

C standard
library %

glibc

Changes some architecture-independent code

segmentation-related

registers (see CSE451)

Returns the processor architecture-dependent code

backtoglibc Linux kernel

unpriv CPU

0x00000000

CSE333, Winter 2025

W UNIVERSITY of WASHINGTON LO8: File 1/0, System Calls

Details on x86/Linux

OxFFFFFFFF Your program

glibc continues to

execute
" Might execute more "
system calls C sl;fg;?arzr

= Eventually SE glibc

returns back to
your program code

architecture-independent code

architecture-dependent code

IR Linux kernel

unpriv CPU

0x00000000

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

strace

+ A useful Linux utility that shows the sequence of system
calls that a process makes:

bash$ strace 1ls 2>&1 | less

execve ("/usr/bin/1ls", ["1s"], [/* 41 vars */]) =

brk (NULL) = 0x15aa000

mmap (NULL, 4096, PROT READ|PROT WRITE, MAP PRIVATE|MAP ANONYMOUS, - 1,
0x7£03bb741000

access ("/etc/ld.so.preload", R OK) = -1 ENOENT (No such file or directory)

open ("/etc/ld.so.cache", O RDONLY|O CLOEXEC) = 3

fstat (3, {st mode=S IFREG|0644, st size=126570, ...}) = 0

mmap (NULL, 126570, PROT READ, MAP PRIVATE, 3, 0) = 0x7£f03bb722000

close (3) =0

open("/1ib64/libselinux.so.1", O RDONLY|O CLOEXEC) = 3

read (3, "\177ELF\2\I\1\0\0\0O\N0O\NO\NONONONO\N3\0O>\0O\N1\O\NO\NO\3003\0\NO\NO\NO\NONO" ...,
832) = 832

fstat (3, {st mode=S IFREG|0755, st size=155744, ...}) =0

mmap (NULL, 2255216, PROT READ|PROT EXEC, MAP PRIVATE|MAP DENYWRITE, 3,
0x7£03bb2£fa000

mprotect (0x7£03bb31e000, 2093056, PROT NONE) =

mmap (0x7£03bb51d4000, 8192, PROT READ|PROT WRITE,
MAP PRIVATE |MAP FIXED|MAP DENYWRITE, 3, 0x23000) = 0x7f03bb51d000

etc

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

If You’re Curious

J
*

X

J
*

J
*

Download the Linux kernel source code

= Available from http://www.kernel.org/

man, section 2: Linux system calls
" man 2 1ntro

" man 2 syscalls

man, section 3: glibc/libc library functions

" man 3 1intro

The book: The Linux Programming Interface by Michael
Kerrisk (keeper of the Linux man pages)

46

http://www.kernel.org/

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Extra Exercise #1

+» Write a program that:
= Uses argc/argv to receive the name of a text file
= Reads the contents of the file a line at a time
" Parses each line, converting textintoa uint32 t
= Builds an array of the parsed uint32 t’'s
= Sorts the array bash$ cat in.txt

1213
® Prints the sorted array to stdout 3231

000005
52

bash$./extral in.txt
5

o%

» Hint: use man to read about

getline, sscanf, reallocg, i;B

and gsort 3231
bash$

47

W UNIVERSITY of WASHINGTON LO8: File I/O, System Calls CSE333, Winter 2025

Extra Exercise #2

+» Write a program that:

= Loops forever; in each loop:

- Prompt the user to 00000000

_ . 00000010
input a filename 00000020

_ 00000030

- Reads a filename 00000040
, 00000050

from stdin 00000060
00000070

- Opens and reads 00000080
, 00000090

the file 00000040

. etc ...

« Prints its contents
to stdout in the format shown:

" Use man toread about fgets

= QOr, if you're more courageous, tryman 3 readline tolearn about

libreadline.a and Google to learn how to link to it
48

