
CSE333, Winter 2025L04: The Heap, Structs

The Heap and Structs
CSE 333 Winter 2025

Instructor: Hal Perkins

Teaching Assistants:
Lainey Jeon Hannah Jiang Irene Lau
Nathan Li Janani Raghavan Sean Siddens
Deeksha Vatwani Yiqing Wang Wei Wu
Jennifer Xu

CSE333, Winter 2025L04: The Heap, Structs

Administrivia

v Yet another exercise, ex3, out today, due Wed. morning

v Read you email! Within a half-hour of releasing ex0
feedback last night we had a half-dozen postings on ed
asking about grades, in spite of sending email to everyone
about how to handle regrade requests. Not good. You
are responsible for email sent to the class.

v Reminder: we post sample solutions to exercises right
after they are due. Use the solutions to compare to your
work and pick up ideas and maybe improvements

2

CSE333, Winter 2025L04: The Heap, Structs

More Administrivia
v HW1 due a week from Thursday

§ You should have looked through it by now and gotten started
§ Be sure to read headers carefully while implementing

• Header files / interfaces may not be changed, but ok to add local “helper”
functions in .c files when appropriate

§ Pace yourself and make steady progress
• Then you can “walk away” and come back later or the next day with a fresh look if

when things get complicated/weird/buggy

v Use gitlab add/commit/push regularly after a chunk is done to save
work (not just once at the end of the project – gitlab is not a “turnin
server”, it’s a code repository)
§ Especially after each new part of the project or other unit of work is done
§ Provides backup in case later work clobbers useful things or computer

crashes or …

3

CSE333, Winter 2025L04: The Heap, Structs

Documentation vs Folklore…

v Documentation:
§ man pages, books
§ Reference websites: cplusplus.org, man7.org, gcc.gnu.org, etc.

v Folklore:
§ Google-ing, stackoverflow, chatGPT, that rando in lab or on zoom

v Tradeoffs? Relative strengths & weaknesses?
§ Discuss

v Gotta learn to read the docs – they are the only truly
authoritative source

4

CSE333, Winter 2025L04: The Heap, Structs

Lecture Outline

v Heap-allocated Memory
§ malloc() and free()
§ Memory leaks

v structs and typedef

5

CSE333, Winter 2025L04: The Heap, Structs

Memory Allocation So Far

v So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main(int argc, char** argv) {
 counter++;
 printf("count = %d\n",counter);
 return 0;
}

int foo(int a) {
 int x = a + 1; // local var
 return x;
}

int main(int argc, char** argv) {
 int y = foo(10); // local var
 printf("y = %d\n",y);
 return 0;
}

§ counter is statically-allocated
• Allocated when program is loaded
• Deallocated when program exits

§ a, x, y are automatically-
allocated
• Allocated when function is called
• Deallocated when function returns

6

CSE333, Winter 2025L04: The Heap, Structs

Why Dynamic Allocation?

v Situations where static and automatic allocation aren’t
sufficient:
§ We need memory that persists across multiple function calls but

not for the whole lifetime of the program
§ We need more memory than can fit on the stack
§ We need memory whose size is not known in advance

– For example, read a file into memory….

// this is pseudo-C code
char* ReadFile(char* filename) {
 int size = GetFileSize(filename);
 char* buffer = AllocateMem(size);

 ReadFileIntoBuffer(filename, buffer);
 return buffer;
}

7

CSE333, Winter 2025L04: The Heap, Structs

Dynamic Allocation

v What we want is dynamically-allocated memory
§ Your program explicitly requests a new block of memory

• The code allocates it at runtime, perhaps with help from OS

§ Dynamically-allocated memory persists until either:
• Your code explicitly deallocates it (manual memory management)
• A garbage collector collects it (automatic memory management)

v C requires you to manually manage memory
§ Gives you more control, but causes headaches

8

CSE333, Winter 2025L04: The Heap, Structs

The Heap

v The Heap is a large pool of
available memory used to hold
dynamically-allocated data
§ malloc allocates chunks of data in

the Heap; free deallocates those
chunks

§ malloc maintains bookkeeping data
in the Heap to track allocated blocks

9

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

CSE333, Winter 2025L04: The Heap, Structs

Aside: NULL

v NULL is a memory location that is guaranteed to be
invalid
§ In C on Linux, NULL is 0x0 and an attempt to dereference NULL

causes a segmentation fault

v Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error
§ It’s better to cause a segfault than to allow the corruption of

memory!

10

int main(int argc, char** argv) {
 int* p = NULL;
 *p = 1; // causes a segmentation fault
 return 0;
}

segfault.c

CSE333, Winter 2025L04: The Heap, Structs

malloc()

v General usage:

v malloc allocates a block of memory of the requested
size
§ Returns a pointer to the first byte of that memory

• And returns NULL if the memory allocation failed!
§ You should assume that the memory initially contains garbage
§ You’ll typically use sizeof to calculate the size you need and

cast the result to the desired pointer type

var = (type*) malloc(size in bytes)

// allocate a 10-float array
float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL) {
 return errcode;
}
... // do stuff with arr

11

CSE333, Winter 2025L04: The Heap, Structs

calloc()

v General usage:

v Like malloc, but also zeros out the block of memory
§ Helpful when zero-initialization wanted (but don’t use it to mask

bugs – fix those)
§ Slightly slower; but useful for non-performance-critical code or if

you really are planning to zero out the new block of memory
§ malloc and calloc are found in stdlib.h

var = (type*) calloc(num, bytes per element)

// allocate a 10-double array
double* arr = (double*) calloc(10, sizeof(double));
if (arr == NULL) {
 return errcode;
}
... // do stuff with arr

12

CSE333, Winter 2025L04: The Heap, Structs

free()

v Usage: free(pointer);

v Deallocates the memory pointed-to by the pointer
§ Pointer must point to the first byte of heap-allocated memory (i.e.

something previously returned by malloc or calloc)
§ Freed memory becomes eligible for future (re-)allocation
§ The bits in the pointer are not changed by calling free

• Defensive programming: can set pointer to NULL after freeing it

13

free(pointer);

float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL)
 return errcode;
... // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

14

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums

Note: Arrow points
to next instruction.

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

15

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

16

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

17

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

malloc

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

18

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i a2

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

19

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

copy
a size 4

nums 1 2 3 4

i 0 a2

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

20

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

1 2 3 4

main
ncopy

copy
a size 4

nums 1 2 3 4

i 4 a2

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

21

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

22

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

1 2 3 4

main
ncopy

nums 1 2 3 4

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

23

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums 1 2 3 4

free

CSE333, Winter 2025L04: The Heap, Structs

Heap and Stack Example

24

#include <stdlib.h>

int* copy(int a[], int size) {
 int i, *a2;

 a2 = malloc(size*sizeof(int));
 if (a2 == NULL)
 return NULL;

 for (i = 0; i < size; i++)
 a2[i] = a[i];

 return a2;
}

int main(int argc, char** argv) {
 int nums[4] = {1, 2, 3, 4};
 int* ncopy = copy(nums, 4);
 // .. do stuff with the array ..
 free(ncopy);
 return 0;
}

arraycopy.c OS kernel [protected]

Stack

Heap (malloc/free)
Read/Write Segment
Read-Only Segment

(main, copy)

main
ncopy

nums 1 2 3 4

CSE333, Winter 2025L04: The Heap, Structs

Memory Corruption
v There are all sorts of ways to corrupt memory in C

§ What can go wrong here? What is guaranteed to cause an error?

27

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 int a[2];
 int* b = malloc(2*sizeof(int));
 int* c;

 a[2] = 5; // 1
 b[0] += 2; // 2
 c = b+3; // 3
 free(&(a[0])); // 4
 free(b); // 5
 free(b); // 6
 b[0] = 5; // 7

 // any many more!
 return 0;
}memcorrupt.c

CSE333, Winter 2025L04: The Heap, Structs

Memory Corruption

v There are all sorts of ways to corrupt memory in C

28

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 int a[2];
 int* b = malloc(2*sizeof(int));
 int* c;

 a[2] = 5; // assign past the end of an array
 b[0] += 2; // assume malloc zeros out memory
 c = b+3; // mess up your pointer arithmetic
 free(&(a[0])); // free something not malloc'ed
 free(b);
 free(b); // double-free the same block
 b[0] = 5; // use a freed (dangling) pointer

 // any many more!
 return 0;
}memcorrupt.c

CSE333, Winter 2025L04: The Heap, Structs

Memory Corruption - What Happens?

29

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 int a[2];
 int* b = malloc(2*sizeof(int));
 int* c;

 a[2] = 5; // assign past the end of an array
 b[0] += 2; // assume malloc zeros out memory
 c = b+3; // mess up your pointer arithmetic
 free(&(a[0])); // free something not malloc'ed
 free(b);
 free(b); // double-free the same block
 b[0] = 5; // use a freed (dangling) pointer

 // any many more!
 return 0;
}

memcorrupt.c

stack:

heap:

main

a

b

c

?

?

?

?

???

X

CSE333, Winter 2025L04: The Heap, Structs

Memory Leak
v A memory leak occurs when code fails to deallocate

dynamically-allocated memory that is no longer used
§ e.g. forget to free malloc-ed block, lose/change pointer to the block
§ Takes real work to prevent – as pointers are passed around, what part of

the program is responsible for freeing each malloc-ed block?

v What happens: program’s VM footprint will keep growing
§ This might be OK for short-lived program, since all memory is

deallocated when program ends
§ Usually has bad repercussions for long-lived programs

• Might slow down over time (e.g. lead to VM thrashing)
• Might exhaust all available memory and crash
• Other programs might get starved of memory

30

CSE333, Winter 2025L04: The Heap, Structs

Lecture Outline

v Heap-allocated Memory
§ malloc() and free()
§ Memory leaks

v structs and typedef

31

CSE333, Winter 2025L04: The Heap, Structs

Structured Data

v A struct is a C datatype that contains a set of fields
§ Similar to a Java class, but with no methods or constructors
§ Useful for defining new structured types of data
§ Act similarly to primitive variables (can assign, pass by value, …)
§ A struct tagname is a tag; not a full first-class type name

v Generic declaration:

32

struct tagname {
 type1 name1;
 ...
 typeN nameN;
};

// the following defines a new
// structured datatype called
// a "struct Point"
struct Point {
 float x, y;
};

// declare and initialize a
// struct Point variable
struct Point origin = {0.0,0.0};

CSE333, Winter 2025L04: The Heap, Structs

Using structs
v Use “.” to refer to a field in a struct
v Use “->” to refer to a field from a struct pointer

§ Shorthand for: dereference pointer first, then accesses field
• Using p->x instead of (*p).x is standard practice – do it that way

33

struct Point {
 float x, y;
};

int main(int argc, char** argv) {
 struct Point p1 = {0.0, 0.0}; // p1 is stack allocated
 struct Point* p1_ptr = &p1;

 p1.x = 1.0;
 p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;
 return 0;
}

simplestruct.c

CSE333, Winter 2025L04: The Heap, Structs

Copy by Assignment

v You can assign the value of a struct from a struct of the
same type – this copies the entire contents!

34

#include <stdio.h>

struct Point {
 float x, y;
};

int main(int argc, char** argv) {
 struct Point p1 = {0.0, 2.0};
 struct Point p2 = {4.0, 6.0};

 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
 p2 = p1;
 printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
 return 0;
}

structassign.c

CSE333, Winter 2025L04: The Heap, Structs

typedef

v Generic format: typedef type name;
v Allows you to define new data type names/synonyms

§ Both type and name are usable and refer to the same type
§ Be careful with pointers – * before name is part of type!

35

typedef type name;

// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“
// make "PointPtr" a synonym for "struct point_st*"
typedef struct point_st {
 superlong x;
 superlong y;
} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

CSE333, Winter 2025L04: The Heap, Structs

Dynamically-allocated Structs

v You can malloc and free structs, just like other data
type
§ sizeof is particularly helpful here

36

// a complex number is a + bi
typedef struct complex_st {
 double real; // real component
 double imag; // imaginary component
} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*
ComplexPtr AllocComplex(double real, double imag) {
 Complex* retval = (Complex*) malloc(sizeof(Complex));
 if (retval != NULL) {
 retval->real = real;
 retval->imag = imag;
 }
 return retval;
}

complexstruct.c

CSE333, Winter 2025L04: The Heap, Structs

Structs as Arguments

v Structs are passed by value, like everything else in C
§ Entire struct is copied – where?
§ To manipulate a struct argument, pass a pointer instead

37

typedef struct point_st {
 int x, y;
} Point, *PointPtr;

void DoubleXBroken(Point p) { p.x *= 2; }

void DoubleXWorks(PointPtr p) { p->x *= 2; }

int main(int argc, char** argv) {
 Point a = {1,1};
 DoubleXBroken(a);
 printf("(%d,%d)\n", a.x, a.y); // prints: (,)
 DoubleXWorks(&a);
 printf("(%d,%d)\n", a.x, a.y); // prints: (,)
 return 0;
}

CSE333, Winter 2025L04: The Heap, Structs

Returning Structs

v Exact method of return depends on calling conventions
§ Often in %rax and %rdx for small structs
§ Often returned in memory for larger structs

38

// a complex number is a + bi
typedef struct complex_st {
 double real; // real component
 double imag; // imaginary component
} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {
 Complex retval;

 retval.real = (x.real * y.real) - (x.imag * y.imag);
 retval.imag = (x.imag * y.real) - (x.real * y.imag);
 return retval; // returns a copy of retval
}

complexstruct.c

CSE333, Winter 2025L04: The Heap, Structs

Pass Copy of Struct or Pointer?

v Value passed: passing a pointer is cheaper and takes less
space unless struct is small

v Field access: indirect accesses through pointers are a bit
more expensive and can be harder for compiler to
optimize

v For small stucts (like struct complex_st), passing a
copy of the struct can be faster and often preferred if
function only reads data; for large structs or if the
function should change caller’s data, use pointers

39

CSE333, Winter 2025L04: The Heap, Structs

Extra Exercise #1

v Write a program that defines:
§ A new structured type Point

• Represent it with floats for the x and y coordinates

§ A new structured type Rectangle
• Assume its sides are parallel to the x-axis and y-axis
• Represent it with the bottom-left and top-right Points

§ A function that computes and returns the area of a Rectangle
§ A function that tests whether a Point is inside of a Rectangle

40

CSE333, Winter 2025L04: The Heap, Structs

Extra Exercise #2

v Implement AllocSet() and FreeSet()
§ AllocSet() needs to use malloc twice: once to allocate a new

ComplexSet and once to allocate the “points” field inside it
§ FreeSet() needs to use free twice

41

typedef struct complex_st {
 double real; // real component
 double imag; // imaginary component
} Complex;

typedef struct complex_set_st {
 double num_points_in_set;
 Complex* points; // an array of Complex
} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);
void FreeSet(ComplexSet* set);

