
CSE333, Winter 2025L01: Intro, C

Intro, C refresher
CSE 333 Winter 2025

Instructor: Hal Perkins

Teaching Assistants:
Lainey Jeon Hannah Jiang Irene Lau
Nathan Li Janani Raghavan Sean Siddens
Deeksha Vatwani Yiqing Wang Wei Wu
Jennifer Xu

CSE333, Winter 2025L01: Intro, C

Lecture Outline

v Course Introduction
v Course Policies

§ https://courses.cs.washington.edu/courses/cse333/25wi/syllabus.html

v C Intro

2

https://courses.cs.washington.edu/courses/cse333/25wi/syllabus.html

CSE333, Winter 2025L01: Intro, C

Welcome Back…
v Happy new year! Hope you’ve had a great winter break and

are all set for a great quarter! But…

v Please speak up if things aren’t (or are!) going well
§ We can often help if we know about things, so stay in touch with TAs,

instructor, advising, friends and peers, others
§ Don’t try to “tough it out” or pretend it will get better if you just ignore

problems – speak up when there’s plenty of time to fix things!

v Please show understanding and compassion for each other and
help when you can – both in and outside of class

v Let’s have a great quarter and stay on top of things!

3

CSE333, Winter 2025L01: Intro, C

Introductions: Course Staff

v Hal Perkins (instructor)
§ Long-time CSE faculty member and CSE 333 veteran

v TAs:
§ Lainey Jeon, Hannah Jiang, Irene Lau, Janani Raghavan, Sean

Siddens, Deeksha Vatwani, Yiqing Wang, Wei Wu, & Jennifer Xu
§ Available in section, office hours, and discussion group
§ An invaluable source of information and help

v Get to know us
§ We are here to help you succeed!

4

CSE333, Winter 2025L01: Intro, C

Introductions: Students

v ~205 students this quarter

v Expected background
§ Prereq: CSE 351 – C, pointers, memory model, linker, system calls
§ CSE 391 or Linux skills needed for CSE 351 assumed

5

CSE333, Winter 2025L01: Intro, C

Course Map: 100,000 foot view

6

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Winter 2025L01: Intro, C

Systems Programming

v The programming skills, engineering discipline, and
knowledge you need to build a system

§ Programming: C / C++

§ Discipline: testing, debugging, performance analysis

§ Knowledge: long list of interesting topics
• Concurrency, OS interfaces and semantics, techniques for consistent

data management, distributed systems algorithms, …
• Most important: a deep(er) understanding of the “layer below”

7

CSE333, Winter 2025L01: Intro, C

Discipline?!?

v Cultivate good habits, encourage clean code
§ Coding style conventions
§ Unit testing, code coverage testing, regression testing
§ Documentation (code comments, design docs)
§ Code reviews

v Will take you a lifetime to learn
§ But oh-so-important, especially for systems code

• Avoid write-once, read-never code

8

CSE333, Winter 2025L01: Intro, C

Lecture Outline

v Course Introduction
v Course Policies

§ https://courses.cs.washington.edu/courses/cse333/25wi/syllabus.html
§ Summary/highlights here, but you must read the full details online

v C Intro

9

CSE333, Winter 2025L01: Intro, C

Communication
v Website: http://cs.uw.edu/333

§ Schedule, policies, materials, assignments, etc.
v Discussion: Ed group linked to course home page

§ Ask and answer questions – staff will monitor and contribute
§ Use private messages for questions about detailed code, etc.

v Messages to staff: for things not suitable for ed chat messages
or gradescope regrade requests, please send email to
cse333-staff@cs.uw.edu. Reaches all staff so the right person
can help out quickly, and helps us follow up until resolved
§ (don’t email to instructor or individual TAs if possible – we can get quick

answers for you and coordinate better if it goes to the staff)
v Announcements: will use broadcast Ed messages to send

“things everyone must read and know”
v Office Hours: spread throughout the week

§ Schedule posted shortly and will start as soon as we can

10

http://cs.uw.edu/333
mailto:cse333-staff@cs.uw.edu

CSE333, Winter 2025L01: Intro, C

Course Components
v Lectures (~28)

§ Introduce the concepts; take notes!!!

v Sections (10)
§ Applied concepts, important tools and skills for assignments,

clarification of lectures, exam review and preparation

v Programming Exercises (~18)
§ Roughly one per lecture, due the morning before the next lecture
§ Coarse-grained grading (check plus/check/check minus = 3, 2, 1, or 0)

v Programming Projects (0+4)
§ Warmup, then 4 “homeworks” that build on each other, individual work

v Midterm and final exam
§ Goal is to revisit and internalize concepts
§ Scheduled outside class so everyone can take at same time

• On course calendar now – please plan ahead
11

CSE333, Winter 2025L01: Intro, C

Grading (tentative)

v Exercises: ~30%
§ Submitted via GradeScope (account info mailed later today)
§ Evaluated on correctness (“does it work”) and code quality

v Projects: ~45% total
§ Submitted via GitLab; must tag commit that you want graded
§ “does it work” and code quality both matter, roughly similarly
§ Binaries provided if you didn’t get previous part working or prefer

to start with a known good solution to previous parts

v Exams: Midterm: ~10%, Final: ~15%

v More details on course website
§ You must read the syllabus there – you are responsible for it

12

CSE333, Winter 2025L01: Intro, C

Deadlines & Late Policies

v Exercises: no late submissions accepted, due 10 am
before class
§ Idea is to try out ideas introduced in lecture before the next class

v Projects: 4 late days for entire quarter, max 2 per project

v Need to get things done on time – difficult to catch up!
§ But we will work with you if unusual circumstances / problems

13

CSE333, Winter 2025L01: Intro, C

Conduct
v Academic Integrity (read the full policy on the web)

§ We want a collegial group helping each other succeed!
§ But: you must never misrepresent work done by someone else (or

something else, including AI) as your own, without proper credit when
appropriate, or assist others to do the same
• Do not attempt to bypass learning by avoiding work, do not attempt to

gain credit for something you didn’t do, and don’t help others to do so
§ Read the course policy carefully
§ We trust you to behave ethically

• We have little sympathy for violations of that trust
• Honest work is the most important feature of a university (or engineering

or business or life). Anything less disrespects your colleagues, your
instructor and TAs, and yourself

§ This does not mean suffer in silence – learn from the course staff and
peers, talk, share ideas, use online resouces to learn; but don’t share or
copy work that is supposed to be yours

14

CSE333, Winter 2025L01: Intro, C

Gadgets in Class

v Gadgets reduce focus and learning
§ Bursts of info (e.g. emails, IMs, notifications, etc.) are addictive
§ Heavy multitaskers have more trouble focusing and shutting out

irrelevant information

v So how should we deal with laptops/phones/etc.?
§ Just say no!
§ No open gadgets during class (really!)

• Unless you’re actually using a tablet or something to take notes

§ Urge to search? – ask a question! Everyone benefits!!
§ You may close/turn off non-notetaking electronic devices now
§ Pull out a piece of paper and pen/pencil instead J

• You will learn and retain more if you actively take notes during class

15

CSE333, Winter 2025L01: Intro, C

And off we go…

v Goal is to figure out setup and computing infrastructure
right away so we don’t put that off and then have a
crunch later in the quarter

v So:
§ First exercise out today, due Wednesday morning 10 am before

class
§ Warmup/logistics for larger projects in sections Thursday

• HW0 (the warmup project) published and gitlab repos created before
sections. OK to ignore details until then.

16

CSE333, Winter 2025L01: Intro, C

Deep Breath….

v Any questions, comments, observations, before we go on
to, uh, some technical stuff?

17

CSE333, Winter 2025L01: Intro, C

Lecture Outline

v Course Introduction
v Course Policies

§ https://courses.cs.washington.edu/courses/cse333/25wi/syllabus.html

v C Intro
§ Workflow, Variables, Functions

18

CSE333, Winter 2025L01: Intro, C

C

v Created in 1972 by Dennis Ritchie
§ Designed for creating system software
§ Portable across machine architectures
§ More recently updated in 1999 (C99) and 2011 (C11)

and 2017 (C17) and 2023 (C23)
• But core ideas have been stable for decades

v Characteristics
§ “Low-level” language that allows us to exploit underlying features

of the architecture – but easy to fail spectacularly (!)
§ Procedural (not object-oriented)
§ Typed but unsafe (possible to bypass the type system)
§ Small, basic library compared to Java, C++, most others….

19

CSE333, Winter 2025L01: Intro, C

Generic C Program Layout

20

#include <system_files>
#include "local_files"

#define macro_name macro_expr

/* declare functions */
/* declare external variables & structs */

int main(int argc, char* argv[]) {
 /* the innards */
}

/* define other functions */

CSE333, Winter 2025L01: Intro, C

C Syntax: main

v To get command-line arguments in main, use:
§ int main(int argc, char* argv[])

v What does this mean?
§ argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).

§ argv is an array containing pointers to the arguments as strings
(more on pointers later)

v Example: $./foo hello 87
§ argc = 3
§ argv[0]="./foo", argv[1]="hello", argv[2]="87"

21

int main(int argc, char* argv[])

CSE333, Winter 2025L01: Intro, C

C Workflow
Editor (emacs, vi) or IDE (vscode,…)

22

Source files
(.c, .h)

Object files (.o)

“COMPILE” (compile + assemble)

LINK

LOAD

EXECUTE, DEBUG, …

EDIT

foo.c bar.cfoo.h

foo.o bar.o
libZ.a

bar

Statically-linked
libraries

bar

LINK

libc.soShared libraries
LINK

CSE333, Winter 2025L01: Intro, C

C to Machine Code

23

C source file
(sumstore.c)

Assembly file
(sumstore.s)

C compiler (gcc –S)

Assembler (gcc -c or as)

EDIT

void sumstore(int x, int y,
 int* dest) {
 *dest = x + y;
}

sumstore:
 addl %edi, %esi
 movl %esi, (%rdx)
 ret

Machine code
(sumstore.o)

400575: 01 fe
 89 32
 c3

C compiler
(gcc –c)

CSE333, Winter 2025L01: Intro, C

When Things Go South…

v Errors and Exceptions
§ C does not have exception handling (no try/catch)
§ Errors are returned as integer error codes from functions
§ Because of this, error handling is ugly and inelegant

v Processes return an “exit code” when they terminate
§ Can be read and used by parent process (shell or other)

• In main: return EXIT_SUCCESS; or return EXIT_FAILURE; (e.g., 0 or 1)

v Crashes
§ If you do something bad, you hope to get a “segmentation fault”

(believe it or not, this is the “good” option)

24

CSE333, Winter 2025L01: Intro, C

Java vs. C (351 refresher)

v Are Java and C mostly similar (S) or significantly different
(D) in the following categories?

26

Language Feature S/D Differences in C

Control structures S

Primitive datatypes S/D Similar but sizes can differ (char, esp.), unsigned,
no boolean, uninitialized data, …

Operators S Java has >>>, C has ->

Casting D Java enforces type safety, C does not

Arrays D Not objects, don’t know their own length, no
bounds checking

Memory management D Manual (malloc/free), no garbage collection

CSE333, Winter 2025L01: Intro, C

Primitive Types in C

v Integer types
§ char, int

v Floating point
§ float, double

v Modifiers
§ short [int]
§ long [int, double]
§ signed [char, int]
§ unsigned [char, int]

27

C Data Type 32-bit 64-bit printf

char 1 1 %c
short int 2 2 %hd

unsigned short int 2 2 %hu
int 4 4 %d / %i

unsigned int 4 4 %u
long int 4 8 %ld

long long int 8 8 %lld
float 4 4 %f

double 8 8 %lf
long double 12 16 %Lf

pointer 4 8 %p

Typical sizes – see sizeofs.c

CSE333, Winter 2025L01: Intro, C

C99 Extended Integer Types

v Solves the conundrum of “how big is an long int?”

28

void sumstore(int x, int y, int* dest) {

void sumstore(int32_t x, int32_t y, int32_t* dest) {

#include <stdint.h>

void foo(void) {
 int8_t a; // exactly 8 bits, signed
 int16_t b; // exactly 16 bits, signed
 int32_t c; // exactly 32 bits, signed
 int64_t d; // exactly 64 bits, signed
 uint8_t w; // exactly 8 bits, unsigned
 ...
}

Use extended types in most cse333 code

But int is usually fine for simple ints

CSE333, Winter 2025L01: Intro, C

Basic Data Structures
v C does not support objects!!!

v Arrays are contiguous chunks of memory
§ Arrays have no methods and do not know their own length
§ Can easily run off ends of arrays in C – security bugs!!!

v Strings are null-terminated char arrays
§ Strings have no methods, but string.h has helpful utilities

v Structs are the most object-like feature, but are just collections
of fields – no “methods” or functions

• (but can contain pointers to functions!)

29

x h e l l o \n \0char* x = "hello\n";

CSE333, Winter 2025L01: Intro, C

Function Definitions

v Generic format:

30

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }

 return sum;
}

returnType fname(type param1, …, type paramN) {
 // statements
}

CSE333, Winter 2025L01: Intro, C

Function Ordering

v You shouldn’t call a function that hasn’t been declared yet

31

#include <stdio.h>

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return 0;
}

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

sum_badorder.c

CSE333, Winter 2025L01: Intro, C

Solution 1: Reverse Ordering

v Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

32

#include <stdio.h>

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;

 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return 0;
}

sum_betterorder.c

CSE333, Winter 2025L01: Intro, C

Solution 2: Function Declaration
v Teaches the compiler arguments and return types; function

definitions can then be in a logical order
§ We will use this for all functions – either local or libraries

33

sum_declared.c #include <stdio.h>

int sumTo(int); // func prototype

int main(int argc, char** argv) {
 printf("sumTo(5) is: %d\n", sumTo(5));
 return 0;
}

// sum of integers from 1 to max
int sumTo(int max) {
 int i, sum = 0;
 for (i = 1; i <= max; i++) {
 sum += i;
 }
 return sum;
}

Hint: code examples
from slides are on the
course web for you to
experiment with

CSE333, Winter 2025L01: Intro, C

Function Declaration vs. Definition

v C/C++ make a careful distinction between these two

v Definition: the thing itself
§ e.g. code for function, variable definition that creates storage
§ Must be exactly one definition of each thing (no duplicates)

v Declaration: description of a thing defined elsewhere
§ e.g. function prototype, external variable declaration

• Often in header files and incorporated via #include
• Should also #include declaration in the file with the actual

definition to check for consistency

§ Needs to appear in all files that use the thing
• Should appear before first use

34

CSE333, Winter 2025L01: Intro, C

Multi-file C Programs

35

void sumstore(int x, int y, int* dest) {
 *dest = x + y;
}

#include <stdio.h>

void sumstore(int x, int y, int* dest);

int main(int argc, char** argv) {
 int z, x = 351, y = 333;
 sumstore(x,y,&z);
 printf("%d + %d = %d\n",x,y,z);
 return 0;
}

C source file 1
(sumstore.c)

C source file 2
(sumnum.c)

Compile together:
$ gcc -o sumnum sumnum.c sumstore.c

definition

declaration

CSE333, Winter 2025L01: Intro, C

Compiling Multi-file Programs

v The linker combines multiple object files plus statically-
linked libraries to produce an executable (details later)
§ Includes many standard libraries (e.g. libc, crt1)

• A library is just a pre-assembled collection of .o files

36

sumstore.c

sumnum.c

sumstore.o

sumnum.o

libraries
(e.g. libc)

sumnum

gcc -c

gcc -c

ld or
gcc

CSE333, Winter 2025L01: Intro, C

To-do List
v Explore the website thoroughly: http://cs.uw.edu/333
v Computer setup: CSE labs, attu, or CSE Linux VM
v Exercise 0 is due 10 am sharp Wednesday before class

§ Find exercise spec on website, submit via Gradescope
§ Sample solution will be posted Wednesday after class
§ Give it your best shot and be sure to get it done on time

v Gradescope accounts created late this afternoon
§ Userid is your uw.edu email address
§ Exercise submission: find CSE 333 25wi in gradescope, click on the

exercise, drag-n-drop file(s)! That’s it!!
• See resources page on course web for how to transfer files from attu /

vscode / etc. to your local laptop to do drag-n-drop

v Project repos created and hw0 out mid-week
§ All will become clear in sections this week!

38

http://cs.uw.edu/333

