
 CSE 333 25wi Midterm Exam 2/13/25

 Page 1 of 18

Name ___________________________________ UW Netid: _____________@uw.edu
 (please print legibly)

There are 7 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.
However, you may have a single 5x8 notecard with any hand-written notes you wish on
both sides.

There is a blank sheet of paper at the end with extra space for your answers if you need
more room. It is after all the questions but before the detachable pages with reference
information.

After the extra blank pages for answers, there is a sheet of paper containing assorted
reference information (most of which you probably won’t need). You should remove this
reference sheet from the exam and use it during the exam. It will not be scanned for
grading, so do not write answers on it.

Do not remove any pages from the middle of the exam.

If you do not remember the exact syntax for something, make the best attempt you can.
We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for some answers – we
tried to include enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 18

2. ______ / 16

3. ______ / 20

4. ______ / 16

5. ______ / 20

6. ______ / 8

7. ______ / 2

 CSE 333 25wi Midterm Exam 2/13/25

 Page 2 of 18

Question 1. (18 points) Making things. We’re working with our friend Jungkook on a
new music player app. So far, we’ve got the following files with these #includes to
reference declarations in various header files:

main.c playlist.h playlist.c
#include "playlist.h"
#include "audio.h"
...

... #include "playlist.h"
...

audio.h audio.c
... #include "playlist.h"

#include "audio.h"
...

We’ve been retyping the following gcc commands to build the program:

gcc -Wall -g --std=c17 -c playlist.c
gcc -Wall -g --std=c17 -c audio.c
gcc -Wall -g --std=c17 -c main.c
gcc -Wall -g --std=c17 -o player audio.o playlist.o main.o

Hint: recall that if we compile foo.c with the -c option and do not specify the output
file name (no -o option), the output file created will be named foo.o, as in the gcc
commands above.

(a) (6 points) Draw the dependency diagram showing the dependencies between all files
used or created during the build process. You should draw an arrow pointing from each
file that is built by the gcc commands to the file or files that it depends on.

(continued on next page)

 CSE 333 25wi Midterm Exam 2/13/25

 Page 3 of 18

Question 1. (cont.) Jungkook has gotten tired of typing gcc commands and has written
the following Makefile to automate compiling and recompiling the player program
based on the above gcc commands, but it doesn’t quite work right. It is supposed to
build the player program by recompiling and relinking only the necessary files.

playlist.o: playlist.c playlist.h

gcc -Wall -g --std=c17 -c playlist.c

audio.o: audio.c audio.h
gcc -Wall -g --std=c17 -c audio.c

main.o: main.c
gcc -Wall -g --std=c17 -c main.c

player: audio.o playlist.o main.o
gcc -Wall -g --std=c17 -o player audio.o playlist.o main.o

Answer the following questions about this Makefile and program:

(b) (2 points) Suppose this Makefile and all of the source files (.c and .h), but no
compiler or linker output files are in the same directory. What exactly will happen if we
run the command make in this directory? (Describe the command(s) that are executed
and the result(s) they produce.)

(c) (6 points) If running make as in part (b) above fails to properly build the player
program, describe exactly what needs to be done to fix the Makefile so that it will
work properly. You can either explain your changes below or show the changes needed
by writing them on the Makefile code given above.

(continued on next page)

 CSE 333 25wi Midterm Exam 2/13/25

 Page 4 of 18

Question 1. (cont.) Assume that we have now fixed the Makefile so that it recompiles
only the necessary source files after any changes and successfully builds the player
program when we use the make command.

(d) (2 points) Assuming that we have fixed all the bugs and that all of the source and
output files are up-to-date after running a make command, what commands are executed
if we modify the file main.c and then run make again?

(e) (2 points) Assuming that we have fixed all the bugs and that all of the source and
output files are up-to-date after running a make command, what commands are executed
if we modify the file audio.h and then run make again?

 CSE 333 25wi Midterm Exam 2/13/25

 Page 5 of 18

Question 2. (16 points) Preprocessor. Suppose we have the following two C source
files:

foo.h foo.c

#ifndef FOO_H_
#define FOO_H_

#define MAGIC 42
#define SPELL MAGIC + MAGIC
#define LIMIT 333
#define while if

int foo(int n);

#endif // FOO_H_

#include "foo.h"

#define WIZARD "Gandalf"

int foo(int k) {
 int ans = MAGIC + SPELL;
 while (ans < LIMIT) {
 ans = ans + MAGIC + WIZARD;
 }
 return ans;
}

Show the output produced by the C preprocessor when it processes file foo.c (i.e., if we
were compiling this file, what output would the preprocessor send to the C compiler that
actually translates the program to machine code?) Hint: remember that the preprocessor
does string substitution and does not analyze the C code it produces for correctness.

 CSE 333 25wi Midterm Exam 2/13/25

 Page 6 of 18

Question 3. (20 points) Valgrind and memory. This question concerns the following C
program membugs.c that copies an array of numbers into a linked list on the heap,
prints the contents of the list, and then frees the data.

Warning!! Watch your time and do not get bogged down on this question! Only a small
number of fixes are needed once you’ve found the problem(s).

 1 #include <stdio.h> // for printf
 2 #include <stdlib.h> // for EXIT_SUCCESS
 3
 4 // Node for linked list of integers
 5 typedef struct Node_st {
 6 int value;
 7 struct Node_st* next;
 8 } Node;
 9
 10 // Creates a list of nodes on the heap of numbers
 11 // such that the ith node contains values[i].
 12 // Caller is responsible for freeing the nodes.
 13 // Parameters
 14 // count: the number of elements in the array and
 15 // number of nodes in the returned list
 16 // values: array of numbers to be copied to the list
 17 // returns:
 18 // pointer to first node of new list
 19 Node* MakeList(int count, int values[]);
 20
 21 int main(int arc, char** argv) {
 22 int values[] = {1, 2, 3, 4};
 23 int count = 3;
 24
 25 // create list
 26 Node* head_ptr = MakeList(count, values);
 27
 28 // print values in list
 29 Node* curr_ptr = head_ptr;
 30 while (curr_ptr != NULL) {
 31 int value_to_print = curr_ptr->value;
 32 printf("%i\n", value_to_print);
 33 curr_ptr = curr_ptr->next;
 34 }
 35
 36 // free list contents
 37 for (int i = 0; i < count; i++) {
 38 head_ptr = head_ptr->next;
 39 free(curr_ptr);
 40 curr_ptr = head_ptr;
 41 }
 42 return EXIT_SUCCESS;
 43 }

(continued on next page)

 CSE 333 25wi Midterm Exam 2/13/25

 Page 7 of 18

Question 3 (cont.) Code continued below:

 44
 45 Node* MakeList(int count, int values[]) {
 46 Node* head = (Node*) malloc(sizeof(Node));
 47 // ** imagine null check **
 48 Node* curr_node = head;
 49 for (int i = 0; i < count; i++) {
 50 curr_node->value = values[i];
 51 if (i != count)
 52 curr_node->next = (Node*) malloc(sizeof(Node));
 53 // ** null check – omitted to save space**
 54 }
 55 curr_node = curr_node->next;
 56 }
 57 return head;
 58 }

Question continues on next page. Remainder of this page left blank to be used as needed
while working the problem.

(continued on next page)

 CSE 333 25wi Midterm Exam 2/13/25

 Page 8 of 18

Question 3. (cont.) The program compiles without errors and runs without crashing.
However, when we used valgrind to look for memory bugs, it reported some trouble.

Your job for this question is to examine the valgrind report and the code and then show
where the bugs are in the code and how to fix them. You should show corrections by
crossing out, changing, or adding code in the listing on the previous two pages. There is
extra blank space at the bottom of the previous page for you to use if you need additional
space, or if you need space to draw diagrams or do other work to figure out the answers.

$ valgrind --leak-check=full --track-origins=yes ./membugs
==2432== Memcheck, a memory error detector
==2432== Copyright (C) 2002-2024, and GNU GPL'd, by Julian Seward et al.
==2432== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2432== Command: ./membugs
==2432==
1
2
3
==2432== Conditional jump or move depends on uninitialised value(s)
==2432== at 0x48CB3EB: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2432== by 0x48C052E: printf (in /usr/lib64/libc.so.6)
==2432== by 0x4011B3: main (membugs.c:32)
==2432== Uninitialised value was created by a heap allocation
==2432== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2432== by 0x40125E: MakeList (membugs.c:52)
==2432== by 0x401188: main (membugs.c:26)
==2432==
==2432== Use of uninitialised value of size 8
==2432== at 0x48BF94B: _itoa_word (in /usr/lib64/libc.so.6)
==2432== by 0x48CAFDB: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2432== by 0x48C052E: printf (in /usr/lib64/libc.so.6)
==2432== by 0x4011B3: main (membugs.c:32)
==2432== Uninitialised value was created by a heap allocation
==2432== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2432== by 0x40125E: MakeList (membugs.c:52)
==2432== by 0x401188: main (membugs.c:26)
==2432==
==2432== Conditional jump or move depends on uninitialised value(s)
==2432== at 0x48BF95C: _itoa_word (in /usr/lib64/libc.so.6)
==2432== by 0x48CAFDB: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2432== by 0x48C052E: printf (in /usr/lib64/libc.so.6)
==2432== by 0x4011B3: main (membugs.c:32)
==2432== Uninitialised value was created by a heap allocation
==2432== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2432== by 0x40125E: MakeList (membugs.c:52)
==2432== by 0x401188: main (membugs.c:26)
==2432==
==2432== Conditional jump or move depends on uninitialised value(s)
==2432== at 0x48CB8D3: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2432== by 0x48C052E: printf (in /usr/lib64/libc.so.6)
==2432== by 0x4011B3: main (membugs.c:32)
==2432== Uninitialised value was created by a heap allocation
==2432== at 0x484482F: malloc (vg_replace_malloc.c:446)

 CSE 333 25wi Midterm Exam 2/13/25

 Page 9 of 18

==2432== by 0x40125E: MakeList (membugs.c:52)
==2432== by 0x401188: main (membugs.c:26)
==2432==
==2432== Conditional jump or move depends on uninitialised value(s)
==2432== at 0x48CB0F7: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2432== by 0x48C052E: printf (in /usr/lib64/libc.so.6)
==2432== by 0x4011B3: main (membugs.c:32)
==2432== Uninitialised value was created by a heap allocation
==2432== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2432== by 0x40125E: MakeList (membugs.c:52)
==2432== by 0x401188: main (membugs.c:26)
==2432==
0
==2432== Conditional jump or move depends on uninitialised value(s)
==2432== at 0x4011C5: main (membugs.c:30)
==2432== Uninitialised value was created by a heap allocation
==2432== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2432== by 0x40125E: MakeList (membugs.c:52)
==2432== by 0x401188: main (membugs.c:26)
==2432==
==2432== Conditional jump or move depends on uninitialised value(s)
==2432== at 0x4847AFF: free (vg_replace_malloc.c:989)
==2432== by 0x4011E7: main (membugs.c:39)
==2432== Uninitialised value was created by a heap allocation
==2432== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2432== by 0x40125E: MakeList (membugs.c:52)
==2432== by 0x401188: main (membugs.c:26)
==2432==
==2432==
==2432== HEAP SUMMARY:
==2432== in use at exit: 32 bytes in 2 blocks
==2432== total heap usage: 5 allocs, 3 frees, 1,088 bytes allocated
==2432==
==2432== 16 bytes in 1 blocks are definitely lost in loss record 1 of 2
==2432== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2432== by 0x40121B: MakeList (membugs.c:46)
==2432== by 0x401188: main (membugs.c:26)
==2432==
==2432== 16 bytes in 1 blocks are definitely lost in loss record 2 of 2
==2432== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2432== by 0x40125E: MakeList (membugs.c:52)
==2432== by 0x401188: main (membugs.c:26)
==2432==
==2432== LEAK SUMMARY:
==2432== definitely lost: 32 bytes in 2 blocks
==2432== indirectly lost: 0 bytes in 0 blocks
==2432== possibly lost: 0 bytes in 0 blocks
==2432== still reachable: 0 bytes in 0 blocks
==2432== suppressed: 0 bytes in 0 blocks
==2432==
==2432== For lists of detected and suppressed errors, rerun with: -s
==2432== ERROR SUMMARY: 9 errors from 9 contexts (suppressed: 0 from 0)
$

 CSE 333 25wi Midterm Exam 2/13/25

 Page 10 of 18

Question 4. (16 points) The function on this page and the next opens two files, one for
reading and one for writing, and copies the contents of the first file to the second. Your
job is to complete the code by filling in the blanks lines with the correct POSIX I/O
function calls to handle the file operatons (open, close, read, write).

Here is a summary of some key POSIX I/O functions for your reference.

int open(const char *name, int mode);
 mode is one of O_RDONLY, O_WRONLY, O_RDWR
int creat(const char *name, int mode);
 create a new file
int close(int fd);
ssize_t read(int fd, void *buffer, size_t count);
 returns # bytes read or 0 (eof) or -1 (error)
ssize_t write(int fd, void *buffer, size_t count);
 returns # bytes written or -1 (error)

Below is the code you are to complete. You should assume that all necessary header files
have been #included and you do not need write any other #includes.

#define BUFFER_SIZE 1024

void copy_file(const char *source_file, const char *dest_file) {

 int source_fd = ___________________________________;

 if (source_fd < 0) {

 perror("Error opening source file");

 return;

 }

 int dest_fd = _____________________________________;

 if (dest_fd < 0) {

 perror("Error opening destination file");

 __________________(source_fd); // Close source file

 return;

 }

(continued on next page)

 CSE 333 25wi Midterm Exam 2/13/25

 Page 11 of 18

Question 4. (cont.) Below, complete the rest of the function to copy the files.

 char buffer[BUFFER_SIZE];

 ssize_t bytes_read, bytes_written, nbytes;

 // ok to assume that input either works or doesn’t, but does
 // not need to be retried if a failure is detected

 while ((bytes_read = ______________(source_fd,

 buffer, BUFFER_SIZE)) > 0) {

 bytes_written = 0;

 while (bytes_written < bytes_read) {

 // fill in output function, buffer location, & length
 // (OK to define extra variables here if that helps)

 nbytes = _________________(dest_fd,

 __ ,

 __);

 if (nbytes < 0) {

 perror("error writing to destination file");

 break;

 }

 bytes_written += nbytes;

 }

 }

 if (bytes_read < 0) {

 perror("Error reading from source file");

 }

 // close files

 close(source_fd);

 close (dest_fd);

}

 CSE 333 25wi Midterm Exam 2/13/25

 Page 12 of 18

Question 5. (20 points) Here is one of those slightly maddening C++ programs with a
fairly simple class, which is a wrapper for an integer value, and a small program that uses
it. The code compiles and executes with no errors. In the box on the right, write the
output produced when it runs.

You should assume that all copy constructors, constructors, and destructors are called as
specified by the C++ language and not eliminated by possible compiler optimizations

#include <iostream>
using namespace std;

class Int {
public:
 Int(): n_(17) { cout << "default ctr 17" << endl; }
 Int(int n): n_(n) { cout << "ctr " << n_ << endl; }
 Int(const Int &other): n_(other.n_)
 {cout << "copy ctr " << n_ << endl;}
 Int &operator=(const Int & other) {
 cout << "op= " << n_ << " <- " << other.n_ << endl;
 if (this == &other) return *this;
 n_ = other.n_;
 return *this;
 }
 ~Int() { cout << "dtr " << n_ << endl; }
private:
 int n_;
};

// Return copy of value parameter n
Int cloneval(Int n) {
 return n;
}

// return copy of reference parameter n
Int cloneref(Int &n) {
 return n;
}

int main() {
 Int n1 = 42;
 Int n2 = n1;
 cout << "--1--" << endl;
 Int n3;
 n3 = n1;
 cout << "--2--" << endl;
 n3 = cloneval(n1);
 cout << "--3--" << endl;
 n3 = cloneref(n1);
 cout << "--4--" << endl;
 return EXIT_SUCCESS;
}

Write the program output here

 CSE 333 25wi Midterm Exam 2/13/25

 Page 13 of 18

Question 6. (8 points) Recall the small C++ string class from lecture. Str.h defines
the class as follows:

class Str {
 public:
 Str(); // default constructor
 Str(const char *s); // c-string constructor
 Str(const Str &s); // copy constructor
 ~Str(); // destructor

 // operations
 int length() const; // return length of this STR string
 Str &operator=(const Str &s); // assignment

 // stream output
 friend std::ostream &operator<<(std::ostream &out, const Str &s);

 private:
 char *st_; // c-string on heap with data bytes terminated by '\0'
};

One of our colleagues is experimenting with this class to see if they understand how it
works, and they decided to add a *= operator that would “multiply” the contents of a
Str by concatenating it with itself the specified number of times. Here is an example:

 Str hi("howdy"); // use existing char* constructor to create Str hi
 hi *= 3;
 cout << hi << endl; // writes “howdyhowdyhowdy”

(a) (3 points) Give a declaration of the *= operator function as it would be written in
class Str in the Str.h header file (i.e., what needs to be added to the above class
definition?):

(b) (5 points) Give the implementation of the *= operator as it would appear in the
Str.cc file that implements class Str. (To simplify things, you may assume the
operand of *= is an integer > 0. Hint: the C-string operations summarized on the
reference page at the end of the exam may be useful here, especially strcat.)

 CSE 333 25wi Midterm Exam 2/13/25

 Page 14 of 18

Question 7. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

(a) (1 point) What question were you expecting to appear on this exam that wasn’t
included?

(b) (1 point) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 Yes, yes, it must be included!!!

 No opinion / don’t care

 None of the above. My answer is _________________________________.

 CSE 333 25wi Midterm Exam 2/13/25

 Page 15 of 18

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 333 25wi Midterm Exam 2/13/25

 Page 16 of 18

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 333 25wi Midterm Exam 2/13/25

 Page 17 of 18

Reference information. Here is a collection of information that might, or might not, be
useful while taking the test. You should remove this page from the exam. Do not write
on this page. It will not be scanned for grading.

Memory management (<stdlib.h>)

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)

Strings and characters (<string.h>, <ctype.h>)

Some of the string library functions:

• char* strncpy(dest, src, n), copies exactly n characters from src to dst, adding
‘\0’s at end if the ‘\0’ at the end of the string src is found before n chars copied.

• char* strcpy(dest, src), same as strncpy but with no length check
• char* strncat(dest, src, n), Appends the first n characters of src to dst, plus a

terminating null-character. If the length of the C string in src is less than n, only
the content up to the terminating null-character is copied.

• char* strcat(dest, src), same as strncat but with no length check
• int strncmp(string1, string2, n), <0, =0, >0 if compare <, =, >
• int strcmp(string1, string2)
• char* strstr(string, search_string)
• int strnlen(s, max_length), # characters in s not including terminating ‘\0’
• int strlen(s)
• Character tests: isupper(c), islower(c), isalpha(c), isdigit(c), isspace(c)
• Character conversions: toupper(c), tolower(c)

Files (<stdio.h>)

Some file functions and information:

• Default streams: stdin, stdout, and stderr.
• FILE* fopen(filename, mode), modes include “r” and “w”
• char* fgets(line, max_length, file), returns NULL if eof or error, otherwise reads

up to max-1 characters into buffer, including any \n, and adds a \0 at the end
• size_t fread(buf, 1, count, FILE* f)
• size_t fwrite(buf, 1, count, FILE* f)
• int fprintf(format_string, data…, FILE *f)
• int feof(file), returns non-zero if end of file has been reached
• int ferror(FILE* f), returns non-zero if the error indicator associated with f is set
• int fputs(line, file)
• int fclose(file)

A few printf format codes: %d (integer), %c (char), %s (char*)

 CSE 333 25wi Midterm Exam 2/13/25

 Page 18 of 18

More reference information, C++ this time. Do not write on this page. It will not be
scanned for grading.

C++ strings

If s is a string, s.length() and s.size()return the number of characters in it.
Subscripts (s[i]) can be used to access individual characters. The usual comparison
operators can be used to compare strings, and the operator + can be used to concatenate
strings.

C++ STL

• If lst is a STL vector, then lst.begin() and lst.end() return iterator
values of type vector<...>::iterator. STL lists and sets are similar.

• A STL map is a collection of Pair objects. If p is a Pair, then p.first and
p.second denote its two components. If the Pair is stored in a map, then
p.first is the key and p.second is the associated value.

• If m is a map, m.begin() and m.end() return iterator values. For a map, these
iterators refer to the Pair objects in the map.

• If it is an iterator, then *it can be used to reference the item it currently points
to, and ++it will advance it to the next item, if any.

• Some useful operations on STL containers (lists, maps, sets, etc.):
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false

• Additional operations on vectors:
o c.push_back(x) – copy x to end of c

• Some additional operations on maps:
o m.insert(x) – add copy of x to m (a key-value pair for a map)
o m.count(x) – number of elements with key x in m (0 or 1)
o m[k] can be used to access the value associated with key k. If m[k] is

read and has never been accessed before, then a <key,value> Pair is
added to the map with k as the key and with a value created by the default
constructor for the value type (0 or nullptr for primitive types).

• Some additional operations on sets
o s.insert(x) – add x to s if not already present
o s.count(x) – number of copies of x in s (0 or 1)

• You may use the C++11 auto keyword, C++11-style for-loops for iterating
through containers, and any other features of standard C++11, but you are not
required to do so.

