
CSE 333
Section 7
Inheritance and Networks

Logistics
● HW3 due tonight (!!) 8/7 at 11:00pm

● Exercise 15 due on Monday (8/11)

@ 10:00am

● Midterm revisions during office

hours this week!

● Please make an appointment by

email!

Inheritance

Inheritance
● Motivation: Better modularize our code for similar classes!

● The public interface of a derived class inherits all non-private
member variables and functions (except for ctor, cctor, dtor, op=)
from its base class
○ Similar to: A subclass inherits from a superclass

● Aside: We will be only using public, single inheritance in CSE 333

Polymorphism: Dynamic Dispatch
● Polymorphism allows for you to access objects of related types

(base and derived classes) – Allows interface usage instead of class
implementation

● Dynamic dispatch: Implementation is determined at runtime via
lookup
○ Allows you to call the most-derived version of the actual type of an

object
○ Generally want to use this when you have a derived class

● virtual replaces the class’s default static dispatch with dynamic
dispatch
○ Static dispatch determines implementation at compile time
○ Meaning it does not use dynamic dispatch (just calls its function)

Dynamic Dispatch: Style Considerations
● Defining Dynamic Dispatch in your code base

○ Use virtual only once when first defined in the base class
○ (although in older code bases you may see it repeated on functions in

subclasses)
○ All derived classes of a base class should use override to get the

compiler to check that a function overrides a virtual function from a base
class

● Use virtual for destructors of a base class – Guarantees all derived
classes will use dynamic dispatch to ensure use of appropriate
destructors

Dispatch Decision Tree
DeclaredT* ptr = new ActualT();
ptr->Fcn(); // which version is called?

Is Fcn()
defined in

DeclaredT?

Is DeclaredT::Fcn()
marked as Dynamic

Dispatch? (virtual)

Static dispatch of
DeclaredT::Fcn()

Dynamic dispatch
of most-derived
version of Fcn()
visible to ActualT

Yes

No No

Yes

Compiler
Error

Exercise 1

8

Exercise 1 (Drawing vtable diagram)

f1

9

Exercise 1 Solution (pointers)

f1

f1
f2
f3

f1
f2
f3

10

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

Exercise 1 Solution (output)
#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

A* aa = new A();

aa->f1();

11

A B C D

B::f2
A::f1

A::f2
C::f1

A::f2
A::f1

B::f2
C::f1

Exercise 1 Solution (output)

B* bb = new B();

bb->f1();

12

A B C D

B::f2
A::f1

A::f2
C::f1

A::f2
A::f1

B::f2
C::f1

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

Exercise 1 Solution (output)

B* bb = new B();
A* ab = bb;

bb->f2();
cout << "----" << endl;
ab->f2();

13

A B C D

B::f2

B::f2

A::f2

B::f2

B::f2

A::f2

A::f2

A::f2

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

Exercise 1 Solution (output)

B* bb = new B();

bb->f3();

14

A B C D

B::f2
A::f1
B::f3

A::f2
A::f1
B::f3

A::f2
C::f1
B::f3

B::f2
C::f1
B::f3

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

Exercise 1 Solution (output)

A* ac = new C();

ac->f1();

15

A B C D

B::f2
A::f1

A::f2
C::f1

A::f2
A::f1

B::f2
C::f1

#include <iostream>
using namespace std;

class A {
 public:
 virtual void f1() { f2(); cout << "A::f1" << endl; }
 void f2() { cout << "A::f2" << endl; }
};

class B: public A {
 public:
 virtual void f3() { f1(); cout << "B::f3" << endl; }
 virtual void f2() { cout << "B::f2" << endl; }
};

class C: public B {
 public:
 void f1() { f2(); cout << "C::f1" << endl; }
};

Computer Networking
- At a High Level

16

Computer Networks: A 7-ish Layer Cake

17

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level 18

Wires, radio signals, fiber optics

Computer Networks: A 7-ish Layer Cake

format/meaning of messages

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level

LAN

19

WiFi, ethernet.
Connecting multiple computers

Computer Networks: A 7-ish Layer Cake

20

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level

Computer Networks: A 7-ish Layer Cake

21

Abstraction/Interface

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level

Backbone of
the Internet!

Computer Networks: A 7-ish Layer Cake

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level 22

TCP, UDP,
etc.

Computer Networks: A 7-ish Layer Cake

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level

Stream
abstraction!

23

TCP, UDP,
etc.

Computer Networks: A 7-ish Layer Cake

sending data end-to-end

routing of packets across networks

multiple computers on a local
network

bit encoding at signal level 24

format/meaning of messages

HTTP, DNS, much more

Data Flow

Transmit
Data

Receive
Data

25

Exercise 3

26

Exercise 3

● DNS:

● IP:

● TCP:

● UDP:

● HTTP:

27

Reliable transport protocol on top of IP.

Translating between IP addresses and host names.

Sending websites and data over the Internet.

Unreliable transport protocol on top of IP.

Routing packets across the Internet.

(Transport Layer)

(Transport Layer)

`

(Application Layer)

(Network Layer)

(Application Layer)

TCP versus UDP

Transmission Control Protocol
(TCP):
● Connection-oriented service

● Reliable and Ordered

● Flow control

User Datagram Protocol (UDP):
● “Connectionless” service

● Unreliable packet delivery

● High speed, no feedback

28

TCP guarantees reliability for things like messaging or data transfers. UDP has less
overhead since it doesn’t make those guarantees, but is often fine for streaming
applications (e.g., YouTube or Netflix) or other applications that manage packets on
their own or do not want occasional pauses for packet retransmission or recovery.

Client-Side Networking

29

Client-Side Networking in 5 Easy* Steps!
1. Figure out what IP address and port to talk to
2. Build a socket from the client
3. Connect to the server using the client socket and server socket
4. Read and/or write using the socket
5. Close the socket connection

30
*difficulty is subjective

Remember these are POSIX operations called using glibc C
functions, though we are using them in our C++ programs

Sockets (Berkeley Sockets)
● Just a file descriptor for network communication

○ Defines a local endpoint for network communication
○ Built on various operating system calls

● Types of Sockets
○ Stream sockets (TCP)
○ Datagram sockets (UDP)
○ There are other types, which we will not discuss

● Each TCP socket is associated with a TCP port number (uint16_t) and an
IP address
○ These are in network order (not host order) in TCP/IP data structures!

(https://www.gnu.org/software/libc/manual/html_node/Byte-Order.html)
○ ai_family will help you to determine what is stored for your socket!

31

https://www.gnu.org/software/libc/manual/html_node/Byte-Order.html

Understanding Socket Addresses

fam port addr zero

fam port flow addr scope

struct sockaddr_in (IPv4)

struct sockaddr_in6 (IPv6)

struct sockaddr_storage

struct sockaddr (pointer to this struct is used as parameter type in system calls)

fam ????

16

28

Big enough to hold either

....

32

fam ????

Understanding struct sockaddr*
● It’s just a pointer. To use it, we’re going to have to dereference it and

cast it to the right type (Very strange C “inheritance”)
○ It is the endpoint your connection refers to

● Convert to a struct sockaddr_storage
○ Read the sa_family to determine whether it is IPv4 or IPv6
○ IPv4: AF_INET (macro) → cast to struct sockaddr_in
○ IPv6: AF_INET6 (macro) → cast to struct sockaddr_in6

33

Step 1: Figuring out the port and IP
● Performs a DNS Lookup for a hostname

● Use “hints” to specify constraints (struct addrinfo*)

● Get back a linked list of struct addrinfo results

int getaddrinfo(const char* hostname,
 const char* service,

 const struct addrinfo* hints,
 struct addrinfo** res);

34

Output parameter; *res is
set to the first result in LL

We will set this to nullptr to
get the default; otherwise you
can specify service/port

Hints for the lookup server/refine results

Name of host whose IP we want

struct addrinfo {
 int ai_flags; // additional flags
 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
 size_t ai_addrlen; // length of socket addr in bytes
 struct sockaddr* ai_addr; // pointer to socket addr
 char* ai_canonname; // canonical name
 struct addrinfo* ai_next; // can have linked list of records
}

Step 1: Obtaining your server’s socket address

35

● ai_addr points to a struct sockaddr describing a socket address, can be IPv4 or
IPv6

Steps 2 and 3: Building a Connection

36

2. Create a client socket to manage (returns an integer file descriptor, just
like POSIX open)

// returns file descriptor on success, -1 on failure (errno set)
int socket(int domain, // AF_INET, AF_INET6, etc.
 int type, // SOCK_STREAM, SOCK_DGRAM, etc.
 int protocol); // just put 0 (network abstraction)

3. Use that created client socket to connect to the server socket
// Connects to the server
// returns 0 on success, -1 on failure (errno set)
int connect(int sockfd, // socket file descriptor
 struct sockaddr* serv_addr, // socket addr of server
 socklen_t addrlen); // size of serv_addr

Usually from getaddrinfo!

Steps 4 and 5: Using your Connection

37

// returns amount read, 0 for EOF, -1 on failure (errno set)
ssize_t read(int fd, void* buf, size_t count);

// returns amount written, -1 on failure (errno set)
ssize_t write(int fd, void* buf, size_t count);

// returns 0 for success, -1 on failure (errno set)
int close(int fd);

● Same POSIX methods we used for file I/O!
(so they require the same error checking...)

Helpful References

1. Figure out what IP address and port to talk to
• dnsresolve.cc

2. Build a socket from the client
• connect.cc

3. Connect to the server using the client socket and server socket
• sendreceive.cc

4. Read and/or write using the socket
• sendreceive.cc (same as above)

5. Close the socket connection
38

https://courses.cs.washington.edu/courses/cse333/23sp/lectures/22/code/dnsresolve.cc
https://courses.cs.washington.edu/courses/cse333/23sp/lectures/22/code/connect.cc
https://courses.cs.washington.edu/courses/cse333/23sp/lectures/22/code/sendreceive.cc

