
CSE 333 Section 5
Midterm Review; C++ Classes, Dynamic Memory

Logistics

● Homework 2:
○ Due TODAY @ 11:00pm (7/24)

● Exercise 11!
○ Due on Saturday at 11:00pm (7/26)

● Midterm: this Monday, July 28, in class
○ See Exams page on the website
○ You are allowed ONE 5”x8” notecard with whatever

handwritten notes you want on both sides

https://courses.cs.washington.edu/courses/cse333/25su/exams/

Midterm Review

First, what
questions do
people have
about the
midterm?

such as logistics, topics, etc.
Specific questions about
specific topics or practice
problems will be the next
item on the agenda. :)

Exam Topics and Past Exams

Go through midterm topics and / or past exams and note down a couple
topics or questions you’d like to discuss.

Midterm topics: course website → resources → exams → midterm exam
topic list

Past Exams: course website → resources → exams → under “Old
midterms”

https://courses.cs.washington.edu/courses/cse333/25su/exams/midtermtopics.html
https://courses.cs.washington.edu/courses/cse333/25su/exams/index.html

We will vote for which questions or
topics to go over. We will only have

time in section for at most 3-4
questions or topics, so vote carefully!

C++ Classes, Dynamic Memory

Review: Member vs. Non-Member Functions

● A member function is a part of the class and can be
invoked on the objects of the class

● A non-member function is a normal function that
happens to use the class
○ Often included in the module that defines the class

● Some functionality must be defined one way or the other,
but a lot can be defined either way, so let’s examine the
differences…

Exercise 1

Exercise 1: Member vs Non-Member Comparison

Member Non-member

Access to Private
Members:

Always ● Through getters and setters
● Through friend keyword (do

not use unless needed)

Function call (Func): obj1.Func(obj2) Func(obj1, obj2)

Operator call (*): obj1 * obj2 obj1 * obj2

When preferred: ● Functions that mutate the
object

● “Core” class functionality

● Non-mutating functions
● Commutative functions
● When the class must be on the

right-hand side

Destructor (dtor): Cleans up the resources of an object when it falls out of scope or is
deleted.

Constructors (ctor): Construct a new object (parameters must differ).

Copy Constructor (cctor): Constructs a new object based on another instance. Creates copies
for pass-by-value (i.e., non-references) and value return as well as variable declarations.

class Bar {
 public:
 Bar(); // 0-arg ctor
 Bar(int num); // 1-arg ctor
 Bar(const Bar& other); // cctor
 Bar& operator=(const Bar& other); // op=
 ~Bar(); // dtor
 ...
};

The “Big 4” of Classes (Review)

Assignment Operator (op=): Updates existing object based on another instance.

Construction and Destruction Details

Construction:
1. Construct/initialize data members in order of declaration within the class.

○ If data member appears in the initialization list, apply the specified initialization,
otherwise, default initialize.

2. Execute the constructor body.

Construction and Destruction Details

Construction:
1. Construct/initialize data members in order of declaration within the class.

○ If data member appears in the initialization list, apply the specified initialization,
otherwise, default initialize.

2. Execute the constructor body.

Destruction:
● When multiple objects fall out of scope simultaneously, they are destructed in

the reverse order of construction.
1. Execute the destructor body.
2. Destruct data members in the reverse order of declaration within the class.

Exercise 2

Exercise 2: Foo Bar Ordering
class Bar {
 public:
 Bar() : num_(0) { } // 0-arg ctor
 Bar(int num) : num_(num) { } // 1-arg ctor
 Bar(const Bar& other) : num_(other.num_) { } // cctor
 ~Bar() { } // dtor
 Bar& operator=(const Bar& other) = default; // op=
 int get_num() const { return num_; } // getter

 private:
 int num_;
};

class Foo {
 public:
 Foo() : bar_(5) { } // 0-arg ctor
 Foo(const Bar& b) { bar_ = b; } // 1-arg ctor
 ~Foo() { } // dtor

 private:
 Bar bar_;
};

Given these class declarations,
find the order of execution of the
program (on the next slide)

Exercise 2: Foo Bar Ordering
int main() {
 Bar b1(3);
 Bar b2 = b1;
 Foo f1;
 Foo f2(b2);
 return EXIT_SUCCESS;
}

Method Invocation Order:
 1. Bar 1-arg ctor (b1)
 2. Bar cctor (b2)
 3. Foo 0-arg ctor (f1)
 4. ⤷ Bar 1-arg ctor

bar_(5)

num_ = 5

f1

b1

num_ = 3

b2

num_ = 3

 5. Foo 1-arg ctor (f2)

bar_()

num_ = 0

 6. ⤷ Bar 0-arg ctor
 7. ⤷ Bar op=

f2

 8. Foo dtor (f2)

12. Bar dtor (b2)

 9. ⤷ Bar dtor
10. Foo dtor (f1)
11. ⤷ Bar dtor

13. Bar dtor (b1)
num_ = 3

Design Considerations

● What happens if you don’t define a copy constructor? Or an assignment
operator? Or a destructor? Why might this be bad?

● How can you disable the copy constructor/assignment operator/destructor?

● In C++, if you don’t define any of these, one will be synthesized for you

● The synthesized copy constructor does a shallow copy of all fields

● The synthesized assignment operator does a shallow copy of all fields

● The synthesized destructor calls the default destructors of any fields

that have them

Set their prototypes equal to the keyword “delete”:

SomeClass(const SomeClass&) = delete;

New and Delete Operators

new: Allocates the type on the heap, calling specified constructor if it is a class type

 Syntax:

type* ptr = new type;
type* heap_arr = new type[num];

delete: Deallocates the type from the heap, calling the destructor if it is a class type.
For anything you called new on, you should at some point call delete to clean it up

 Syntax:

delete ptr;
delete[] heap_arr;

Exercise 3

Exercise 3: Memory Leaks
class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky** dbl_ptr = new Leaky*;
 Leaky* lky_ptr = new Leaky();
 *dbl_ptr = lky_ptr;
 delete dbl_ptr;
 return EXIT_SUCCESS;
}

Stack Heap

class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky** dbl_ptr = new Leaky*;
 Leaky* lky_ptr = new Leaky();
 *dbl_ptr = lky_ptr;
 delete dbl_ptr;
 return EXIT_SUCCESS;
}

???

Exercise 3: Memory Leaks Stack Heap

0x602010 0x602030

0x602030lky_ptr

dbl_ptr

0x602050x_

5

How can we fix this leak?
delete lky_ptr;
~Leaky() { delete x_; }

An Acronym to Know: RAII

● Stands for “Resource Acquisition Is Initialization”

● Any resources you acquire (locks, files, heap memory, etc.) should happen in
a constructor (i.e., during initialization)

● Then freeing those resources should happen in the destructor (and handled
properly in cctor, assignment operator, etc.)

● Prevents forgetting to call free/delete, the dtor is called automatically for
you when the object managing the resource goes out of scope.

● For more: https://en.cppreference.com/w/cpp/language/raii

https://en.cppreference.com/w/cpp/language/raii

Exercise 4

Exercise 4: Bad Copy Stack Heap

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int* arr_;
};

int main(int argc, char** argv) {
 BadCopy* bc1 = new BadCopy;
 BadCopy* bc2 = new BadCopy(*bc1); // cctor
 delete bc1;
 delete bc2;
 return EXIT_SUCCESS;
}

Exercise 4: Bad Copy
Stack

Heap

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int* arr_;
};

int main(int argc, char** argv) {
 BadCopy* bc1 = new BadCopy;
 BadCopy* bc2 = new BadCopy(*bc1);
 delete bc1;
 delete bc2;
 return EXIT_SUCCESS;
}

0x...bc20x...bc1

0x...arr_ 0x...arr_

Invalid delete: BAD

as if!

The “Rule of Three”

● If your class needs its own destructor, assignment operator, or copy
constructor, it almost certainly needs all three!

● BadCopy is a good example why, we need a destructor to delete arr, and
so we needed a copy constructor too because otherwise we end up with a
double delete

● BadCopy also needs its own assignment operator for the same reason, even
with a fixed copy constructor, b1 = b2; would still break!

● For more info/examples, see
https://en.cppreference.com/w/cpp/language/rule_of_three

https://en.cppreference.com/w/cpp/language/rule_of_three

