
CSE 333
Section 4
Makefiles, C++ Intro, HW2 Overview

Checking In & Logistics

Quick check-in:

Do you have any questions,
comments, or concerns?

Exercises going ok?

Lectures making sense?

2

REMINDERS:

Exercise 9: Due Monday (7/21) @
10:00 am

Exercise 10: Due Wednesday (7/23) @
10:00 am

Homework 2: Due Thursday (7/24) @
11:00 pm

Makefile Demo

make

❖ make is a classic program for controlling what gets (re)compiled and how

▪ Many other such programs exist (e.g. ant, maven, IDE “projects”)

❖ make has tons of fancy features, but only two basic ideas:

1) Scripts for executing commands

2) Dependencies for avoiding unnecessary work

❖ To avoid “just teaching make features” (boring and narrow), let’s focus more on
the concepts…

4

Building Software
❖ Programmers spend a lot of time “building”

▪ Creating programs from source code

▪ Both programs that they write and other people write

❖ Programmers like to automate repetitive tasks

▪ Repetitive: gcc -Wall -g -std=c17 -o widget foo.c bar.c baz.c

• Retype this every time: 😭
• Use up-arrow or history: 😐 (still retype after logout)

• Have an alias or bash script:🙂
• Have a Makefile: 😊 (you’re ahead of us)

5

“Real” Build Process
❖ On larger projects, you don’t want to have one big (set of) command(s) that

redoes everything on every change:
1) If gcc didn’t combine steps for you, you’d need to preprocess, compile, and link on your

own (along with anything you used to generate the C files)
2) If source files have multiple outputs (e.g. javadoc), you’d have to type out the source file

name(s) multiple times
3) You don’t want to have to document the build logic when you distribute source code
4) You don’t want to recompile everything every time you change something (especially if you

have 105-107 files of source code)

❖ A script can handle 1-3 (use a variable for filenames for 2), but 4 is trickier

6

An Example
❖ We have a small program that is split into multiple tiny modules (code on the

web linked to this lecture):

❖ Modules:

▪ speak.h/speak.c: write a string to stdout

▪ shout.h/shout.c: write a string to stdout LOUDLY

▪ main.c: client program

❖ Demo: build this program incrementally, and recompile only necessary parts
when something changes

❖ How do we automate this “minimal rebuild”?

7

speak.cspeak.h shout.cshout.hmain.c

Recompilation Management

8

Theory Applied to Our Example
❖ What are the dependencies between built and source files?
❖ What needs to be rebuilt if something changes?

9

speak.cspeak.h shout.cshout.hmain.c

speak.o shout.omain.o

talk

make Basics
❖ A makefile contains a bunch of triples:

▪ Colon after target is required

▪ Command lines must start with a TAB, NOT SPACES

▪ Multiple commands for same target are executed in order

• Can split commands over multiple lines by ending lines with ‘\’

❖ Example:

❖ Demo: look at Makefile for our example program

10

foo.o: foo.c foo.h bar.h
gcc -Wall -o foo.o -c foo.c

target: sources
 command

Using make

❖ Defaults:
▪ If no -f specified, use a file named Makefile

▪ If no target specified, will use the first one in the file

▪ Will interpret commands in your default shell

• Set SHELL variable in makefile to ensure
❖ Target execution:

▪ Check each source in the source list:

• If the source is a target in the Makefile, then process it recursively
• If some source does not exist, then error
• If any source is newer than the target (or target does not exist), run command (presumably

to update the target)

11

bash% make -f <makefileName> target

make Variables
❖ You can define variables in a makefile:

▪ All values are strings of text, no “types”

▪ Variable names are case-sensitive and can’t contain ‘:’, ‘#’, ‘=’, or whitespace

❖ Example:

❖ Advantages:

▪ Easy to change things (especially in multiple commands)

▪ Can also specify on the command line (CC=clang FLAGS=-g)

12

CC = gcc
CFLAGS = -Wall -std=c17
foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -o foo.o -c foo.c

More Variables; “phony” targets
(2 separate things)

❖ It’s common to use variables to hold list of filenames:

❖ clean is a convention

▪ Remove generated files to “start over” from just the source

▪ It’s “funny” because the target doesn’t exist and there are no sources, but it works because:

• The target doesn’t exist, so it must be “remade” by running the command

• These “phony” targets have several uses, such as “all”…

13

OBJFILES = foo.o bar.o baz.o
widget: $(OBJFILES)

gcc -o widget $(OBJFILES)
clean:

rm $(OBJFILES) widget *~

“all” Example
14

all: prog B.class someLib.a
notice no commands this time

prog: foo.o bar.o main.o
gcc –o prog foo.o bar.o main.o

B.class: B.java
javac B.java

someLib.a: foo.o baz.o
ar r foo.o baz.o

foo.o: foo.c foo.h header1.h header2.h
gcc -c -Wall foo.c

similar targets for bar.o, main.o, baz.o, etc...

Revenge of the Funny Characters
❖ Special variables:

▪ $@ for target name

▪ $^ for all sources

▪ $< for left-most source

▪ Lots more! – see the documentation

❖ Examples:

15

CC and CFLAGS defined above
widget: foo.o bar.o

$(CC) $(CFLAGS) -o $@ $^
foo.o: foo.c foo.h bar.h

$(CC) $(CFLAGS) -c $<

And more…
❖ There are a lot of “built-in” rules – see documentation
❖ There are “suffix” rules and “pattern” rules

▪ Example:

❖ Remember that you can put any shell command – even whole scripts!
❖ You can repeat target names to add more dependencies
❖ Often this stuff is more useful for reading makefiles than writing your own

(until some day…)

16

%.class: %.java
javac $< # we need the $< here

Exercise 1

17

Exercise 1: File DAG
We have the following files:

Draw a DAG (directed acyclic graph) to represent the dependencies between
source files and targets.

Exercise 1: File DAG
UsePoint.cc

Point.h

Point.cc

Point.o

UsePoint.o

Thing.h

UseThing.cc

Alone.cc

Alone

UseThing

all

UsePoint

CFLAGS = -Wall -g -std=c++17

all: UsePoint UseThing Alone

UsePoint: UsePoint.o Point.o
g++ $(CFLAGS) -o UsePoint UsePoint.o Point.o

UsePoint.o: UsePoint.cc Point.h Thing.h
g++ $(CFLAGS) -c UsePoint.cc

Point.o: Point.cc Point.h
g++ $(CFLAGS) -c Point.cc

UseThing: UseThing.cc Thing.h
g++ $(CFLAGS) -o UseThing UseThing.cc

Alone: Alone.cc
g++ $(CFLAGS) -o Alone Alone.cc

clean:
rm UsePoint UseThing Alone *.o *~

CFLAGS = -Wall -g -std=c++17

all: UsePoint UseThing Alone

UsePoint: UsePoint.o Point.o
g++ -o UsePoint UsePoint.o Point.o

UsePoint.o: UsePoint.cc Point.h Thing.h
g++ -c UsePoint.cc

Point.o: Point.cc Point.h
g++ -c Point.cc

UseThing: UseThing.cc Thing.h
g++ -o UseThing UseThing.cc

Alone: Alone.cc
g++ -o Alone Alone.cc

clean:
rm UsePoint UseThing Alone *.o *~

all:

UsePoint:

UsePoint.o:

Point.o:

UseThing:

Alone:

clean:

all: UsePoint UseThing Alone

UsePoint: UsePoint.o Point.o
g++ -o UsePoint UsePoint.o Point.o

UsePoint.o: UsePoint.cc Point.h Thing.h
g++ -c UsePoint.cc

Point.o: Point.cc Point.h
g++ -c Point.cc

UseThing: UseThing.cc Thing.h
g++ -o UseThing UseThing.cc

Alone: Alone.cc
g++ -o Alone Alone.cc

clean:
rm UsePoint UseThing Alone *.o *~

Exercise 1: Makefile
Write the corresponding Makefile for Point.

all: UsePoint UseThing Alone

UsePoint: UsePoint.o Point.o

UsePoint.o: UsePoint.cc Point.h Thing.h

Point.o: Point.cc Point.h

UseThing: UseThing.cc Thing.h

Alone: Alone.cc

clean:

Pointers, References, & Const

Example

Consider the following code:
int x = 5;
int& x_ref = x;
int* x_ptr = &x;

5x, x_ref 5

0x7fff...x_ptr

What are some tradeoffs to using pointers vs references?

Note syntactic similarity to
pointer declaration

Still the address-of operator!

Pointers vs. References

Pointers References

● Can move to different data via
reassignment/pointer arithmetic

● References the same data for its
entire lifetime - can’t reassign

● Can be initialized to NULL ● No sensible “default reference,”
must be an alias

● Useful for output parameters:
MyClass* output

● Useful for input parameters:
const MyClass &input

● void func(int& arg) vs. void func(int* arg)

● Use references when you don’t want to deal with pointer semantics

○ Allows real pass-by-reference

○ Can make intentions clearer in some cases

● STYLE TIP: use references for input parameters and pointers for output
parameters, with the output parameters declared last

○ Note: A reference can’t be NULL

Pointers, References, Parameters

Const

● Mark a variable with const to make
a compile time check that a variable
is never reassigned

● Does not change the underlying
write-permissions for this variable

int x = 42;

// Read only
const int* ro_x_ptr = &x;

// Can still modify x with
rw_x_ptr!
int* rw_x_ptr = &x;

// Only ever points to x
int* const x_ptr = &x;

420x7fff... 0x7fff...

xro_x_ptr rw_x_ptr

0x7fff...

x_ptr

Legend
Red = can’t change box it’s next to
Black = read and write

Exercise 2

Exercise 2

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff... x_ptrro_ptr1 0x7fff...

0x7fff... ro_ptr2

“Const pointer to an
int”

“Pointer to a const int”

ro_x_ref

Tip: Read the declaration “right-to-left”

Legend
Red = can’t change box it’s
next to
Black = read and write

Which lines result in a compiler error?
✔ OK ❌ ERROR

bar(x_ref);
bar(ro_x_ref);
foo(x_ref);
ro_ptr1 = (int*) 0xDEADBEEF;
x_ptr = &ro_x_ref;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

Exercise 2
void foo(const int& arg);
void bar(int& arg);

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff...

x_ptr
ro_ptr1 0x7fff...

0x7fff...ro_ptr2

ro_x_ref

✔
❌ ro_x_ref is const
✔
✔
❌ ro_x_ref is const
❌ ro_ptr2 is const
❌ (*ro_ptr1) is const

Legend
Red = can’t change box it’s next
to
Black = “read and write”

Exercise 2

When would you prefer void Func(int &arg); to void Func(int *arg);? Expand on this
distinction for other types besides int.

• When you don’t want to deal with pointer semantics, use references
• When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters

and/or return values), use references
• Style wise, we want to use references for input parameters and pointers for output

parameters, with the output parameters declared last

Homework 2 Overview

Homework 2

● Main Idea: Build a search engine for a file system
○ It can take in queries and output a list of files in a directory that has that query
○ The query will be ordered based on the number of times the query is in that file
○ Should handle multiple word queries (Note: all words in a query have to be in the

file)

● What does this mean?
○ Part A: Parsing a file and reading all of its contents into heap allocated memory
○ Part B: Crawling a directory (reading all regular files recursively in a directory)

and building an index to query from
○ Part C: Build a searchshell (search engine) to query your index for results

Note: It will use the LinkedList and
HashTable implementations from HW1!

Part A: File Parsing

Read a file and generate a
HashTable of WordPositions!

Word positions will include the word
and LinkedList of its positions in a
file.

My goodness! I love the course CSE333.\n
I'll recommend this course to my friends.\n

somefile.txt

ParseIntoWordPositionsTable(contents)

typedef struct WordPositions {

 char *word; // normalized word. Owned.

 LinkedList *positions; // list of DocPositionOffset_t.

} WordPositions;

Note that the key is the hashed C-string of
WordPositions

Part B: Directory Crawling – DocTable
Read through a directory in CrawlFileTree.c

For each file visited, build your DocTable and
MemIndex!

DocTable maps document names to IDs.
FNV64 is a hash function.
struct doctable_st {

 HashTable *id_to_name; // mapping doc id to doc name

 HashTable *name_to_id; // mapping docname to doc id

 DocID_t max_id; // max docID allocated so far

};

DocID_t DocTable_Add(DocTable *table, char *doc_name);

Part B: Directory Crawling – MemIndex

MemIndex is an index to view files.
It’s a HashTable of WordPostings.

typedef struct {
 char *word;
 HashTable *postings;
} WordPostings;

Let’s try to find what contains
“course”:
● WordPostings’ postings has an

element with key == 3 (Only
DocID 3 has “course in its file”)

● The value is the LinkedList of
offsets the words are in DocID 3

HashTable

LinkedList

HashTableWordPostings

DocID_t

DocPositionOffset_t

Part C: Searchshell

● Use queries to ask for a result!
○ Formatting should match example output
○ Exact implementation is up to you!

course friends my

Query MemIndex_Search(MemIndex,

QueryArray, QueryLen);

typedef struct SearchResult {

 uint64_t docid; // a document that matches a search query

 uint32_t rank; // an indicator of the quality of the match

} SearchResult, *SearchResultPtr;

Results from Query!

MemIndex.h

Hints

● Read the .h files for documentation about functions!
● Understand the high level idea and data structures before getting started
● Follow the suggested implementation steps given in the CSE 333 HW2 spec

Extern and Static

Extern and Static

38

● extern makes a declaration visible in any module, but tells the linker to
look for the definition in a different module

● static makes a definition private to the current module, and disallows
access from other modules regardless of any further extern declaration

● #include's make it difficult to reason about which files have the declarations
and definitions :(

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

Extern and Static: A Few Examples …

39

● Scenario 1:
○ We have an extern'ed declaration in fib.h, which is #include 'd into the fib and main

modules

○ There is nothing in fib.c

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

Extern and Static: A Few Examples …

40

● Scenario 2:
○ We have an extern'ed declaration in fib.h, which is #include 'd into the fib and main

modules

○ There is a definition in fib.c

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

Extern and Static: A Few Examples …

41

● Scenario 3:
○ We have a static'ed definition in fib.h, which is #include 'd into the fib and main

modules

○ We remove the definition from fib.c

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

Extern and Static: A Few Examples …

42

● Scenario 4:
○ We have no declarations nor definitions in fib.h, which continues to be #include 'd into the

fib and main modules

○ We put the definition back into fib.c

fib.c cc1 fib.o

ld fib

main.c cc1 main.o

