CSE 333
SeCtion 1 C isn't that hard:

void (*(*f[]) ()) () defines f as
_ _ an array of unspecified size, of
C, Pointers, and Gitlab

pointers to functions that
return void .

W UNIVERSITY of WASHINGTON

Logistics

e EXxercise 1:

o Due Friday @ 10:00 AM (4/4)
e Homework O:

o Due Monday @ 11:59 PM (4/7)

o Meant to acquaint you to your repo and project logistics
o Must be done individually

TA Intro!

Icebreaker!

Please turn to the people next to you and share:

e Name, pronouns, year
e \What are you excited to learn in CSE 3337

e The largest animal you could take bare-handed
in a fight

SettingUp git

Accessing Gitlab

e Sign-in using your CSE NetlD @
https://qgitlab.cs.washington.edu/

e There should be a repo created for
you titled: cse333-25sp-
<netid>

e Please let us know if you don’t
have one!

CSE 333: Systems Programming Home Calendar Assignments

Resources

Suggestion: bookmark this page in your web browser for quick access.

CSE 333 Administrative Info

Syllabus

Academic Integrity

Course Calendar

Lectures

Sections

Assignments

Gradescope (exercise submission and all grading)

Course Canvas page (Office hour zoom links and gradebook primarily)
Exams

Remote office hours & computing logistics

Using VS Code to do remote editing on the attu machines
Using SCP to transfer files from the attu machines

vim cheat sheet (vimrc.txt configuration file)

Resources

Linux man pages

gdb manual

gdb card

cs:app (351 textbook)

Google C++ style guide

cplusplus.com: C/C++ reference

cplusplus.com: C++ language tutorial
cppreference.com: another good C/C++ reference site
C++FAQ

O'Reilly books online (use UW login to access books)
CSE 333 git/gitlab guide

CSE Gitlab ——

GIT website, GIT book
CSE Home VM

Resources

https://gitlab.cs.washington.edu/

gcc 11

e CSE Lab machines and the attu cluster use gcc 11.
e As such we’ll be using gcc 11 this quarter

e To verify that you're using gcc 11 run:
o gcc -vor
O gcc --version

e |f you use the CSE Linux home VM, you should use the newer version
even if you have an older one installed (i.e., use 25sp).

Git Repo Usage

e Try to use the command line interface (not Gitlab’s web interface)

e Only push files used to build your code to the repo

o No executables, object files, etc.
o Don’'talways use git add . to add all your local files

e Commit and push when an individual chunk of work is tested and

done
o Don’t push after every edit
o Don’t only push once when everything is done
o Gives you stable checkpoint backups in case something goes wrong

with your working copy

Using VS Code

e Can install an extension that will allow you to directly edit files on a virtual

machine (attu!)
e Will also be helpful to install the C/C++ extension for syntax highlighting

e To setup, visit
https://courses.cs.washington.edu/courses/cse333/25sp/resources/VSCode.pdf

Now take some time to set up your environment. TAs
will come around to help.

10

https://courses.cs.washington.edu/courses/cse333/25sp/resources/VSCode.pdf

Pointer Review

Pointers

e Data type that stores the address of (the lowest byte of) a datum
o Can draw an arrow in memory diagrams from pointer to pointed to data,
particularly if actual value (stored address) is unknown

e Common uses:
o Reference to data allocated elsewhere (e.g., malloc, literals, files)
o lterators (e.g., data structure traversal)
o Data abstraction (e.g., head of linked list, function pointers)

12

Pointer Syntax and Semantics

e Declared as typex name; or type *name;
o Doesn’t matter, just be consistent

e “Address-of’ operator & gets a variable’s address
e “Dereference” operator * refers to the pointed-to datum

e Example code: intx ar = (intx) malloc(3xsizeof(int)); // reference
intx p = &ar[1l]; // iterator
*p = 35

Stack Heap

ar |0x1b126bo

e Example diagram:

I

|

|

I

|

i

p |6x1b126b4 |
I

Output Parameters

Output Parameters

Recall: the return statement in a function passes a single value back
through the %rax register

An output parameter is a C idiom that emulates “returning values”
through parameters:
o An output parameter is a pointer (i.e., the address of a location in memory)
o The function with this parameter must dereference it to change the value
stored at that location
o The new value is “returned” by persisting after the function returns

Output parameters are the only way in C to achieve returning multiple
values

15

Exercise 1

Exercise 1

e \Which parameters are output

parameters?

quotient and remainder

What should go in the division
blanks?
" and &rem

What should go in the printf
blanks?

quot and rem

void division(int numerator,

xquotient
*remainder

}

int denominator,

int* quotient,

int* remainder) {
numerator / denominator;
numerator % denominator;

int main(int argc, char*x argv[]) {

int quot, rem;
division(22, 5, ,)5
printf("%d rem %d\n",))5

return

b

17

Exercise 1

_ void division(int numerator,
e Draw out a memory diagram of the int denominator,

beginning of this call to division. int* quotient,
int* remainder) {
xquotient = numerator / denominator;

5 5 xremainder = numerator % denominator;
quot . rem . 3
int main(int argc, char*x argv[]) {
int quot, rem;
| division(22, 5, ,)
quotient remainder printf("%d rem %d\n", : g
return 5
numerator | 22 denominator | 5 }

18

C-Strings

C-Strings
char str_name[13

e Astring in C is declared as an array of characters that is terminated by a
null character '\0'

e When allocating space for a string, remember to add an extra element for the
null character

21

Initialization Examples

e Code: . . .
// list initialization
char strl[6] = {'H','e','L','L','0',"'"\0O'};
// string literal initialization
char str2[6] = "Hello";
e Memory:
index 0] 1 2 3 4 5
Va-l_ue IHI Iel I'LI I'LI IOI I\Ol
e Notes:

@)

Both initialize the array in the declaration scope (e.g., on the stack if a local var),
though the latter can be thought of as copying the contents from the string literal

into the array
The size 6 is optional, as it can be inferred from the initialization

22

High

Address Space:

Stack

Dynamic Data
(Heap)

—_— ——

Static Data

Literals

Instructions

Addresses AOxF..F
Common String Literal Error
L COde 0 . Memory
// pointer instead of an array addreses
char* str3 = "Hello";
e Memory: str3 | 0x402037 o oo
index / 0) 1 2 3 4 5
Va-l_ue IHI Iel I'LI I'LI IOI I\Ol
e Notes:

o By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)

23

High

Address Space:

Stack

Dynamic Data
(Heap)

—_— ——

Static Data

Literals

Instructions

Addresses AOxF..F
Common String Literal Error
L COde 0 . Memory
// pointer instead of an array addreses
char* str3 = "Hello";
e Memory: str3 | 0x402037 o oo
index / 0) 1 2 3 4 5
Va-l_ue IHI Iel I'LI I'LI IOI I\Ol
e Notes:

o By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)
o What would happen if we executed str3[0]

= 'J';?7 Segfault

24

Function Pointers

Function Pointers

e Pointers can store addresses of int one() { return 1; }
int two() { return 2; }
}

J

functions int three() { return
o Functions are just instructions
in read-only memory, their int get(int (xfunc_name)()) {
_ S return func_name();
names are pointers to this }
memory.
e Used when performing int main(int argc, charx argv[]) {
) i int resl = get(one);
operations for a function to use int res2 = get(two):
o Like a comparator for a sorter int res3 = get(three);
to use in Java printf("%d, %d, %d\n", resl, res2, res3);
return 5

o Reduces redundancy 1

Exercise 2

A prefix sum over an array is the running total of all numbers in the array up to and including the
current number. For example, given the array {1, 2, 3, 4}, the prefix sum would be {1, 3, 6, 10}.

Write a function to compute the prefix sum of an array given a pointer to its first element, the pointer
to the first element of the output array, and the length both arrays (assumed to be the same).

28

A prefix sum over an array is the running total of all numbers in the array up to and including the
current number. For example, given the array {1, 2, 3, 4}, the prefix sum would be {1, 3, 6, 10}.

Write a function to compute the prefix sum of an array given a pointer to its first element, the pointer
to the first element of the output array, and the length both arrays (assumed to be the same).

volid prefix sum(int *input, int *output, int length) {
1if (length == 0) {
return;

}
output [0] = input[0];

for (int 1 = 1; 1 < length; 1++) {
output[i] = output[i - 1] + input[i];
}

29

Exercise 3 (bonus)

The following code has a bug. What’s the problem, and how would you fix it?

void bar(char ch) {
ch = '3";
}

int main(int argc, char* argv[]) {
char fav_class[] = "CSE331";
bar(fav_class[5]);
printf("%s\n", fav_class); // should print "CSE333"

return 5

The following code has a bug. What’s the problem, and how would you fix it?

void bar_fixed(charx ch) {

= *ch = '3'; char[] fav_class
#} ma-InStaCkframe ICI ISI IEI |3l l3l l3l I\Ol
int main(int argc, charx argv([]) {) f
char fav_class[] = ”CSE331”; bar_fjxed StaCk Char* Ch \
= bar (&fav_class[5]); frame
mp Printf("%s\n", fav_class); // should print "CSE333"
return 5
¥

Modifying the argument ch in bar will not affect fav_class in
main() because arguments in C are always passed by value.

In order to modify fav_class inmain(), we need to pass a
pointer to a character (charx) into bar and then dereference it:

void bar_fixed(charx ch) {
xch = '3"';

}

