YA UNIVERSITY of WASHINGTON L23: Concurrency and Processes

Concurrency: Processes
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Audrey Seo

Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Administrivia
» Last exercise due this morning woohoo! -

+ hw4d due Wednesday night

= Usual late days (2 max) apply if you have any remaining

« Final exam Fri. August 22nd, 1:10-2:10, HRC 155

= Topic list on the web; exam will mostly cover 2"® half of the
quarter

= Old exams also available on the website.

* Closed book but you may have a 3x5 card with handwritten notes

- Blank cards available after class



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Administrivia

+ Course evaluations open as of Friday
= Your feedback fuels me £

= https://uw.iasystem.ora/survey/311914

« Section this week is an exam review... show up, and bring
exam questions!



w UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Administrivia

« Extra final points for coming to office hours this week
= +5 points on the final (out of 100), but can’t go above
100 total

= Must go to an existing, in-person office hours and bring
a problem set to work on; either from the
extra-problems in the slides, or an old final question

= Make sure the staff member writes down your name



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Search Server Versions

« We’ve been looking at different searchserver
implementations

= Sequential
= Concurrent via dispatching threads: pthread create ()

*= Concurrent via forking processes: fork ()

Reference: Computer Systems: A Programmer’s
Perspective, Chapter 12 (CSE 351 book)



w UNIVERSITY of WASHINGTON L21: Concurrency Intro CSE333, Summer 2025

Concurrency and Processes

« Toimplement a “process”, the operating system gives us:
= Resources such as file handles and sockets
= Call stack + registers to support (eg, PC, SP)

= Virtual memory (page tables, TLBs, etc ...)

«» Minimal set to implement concurrency: Call stack and
registers

< But what if we want more than the minimum
“Worker” 1 “Worker” 2

bucket = hash (word); foreach hit in hitlist {
hitlist = file.read (bucket); doclist.append(file.read(hit)) ;

}




YA UNIVERSITY of WASHINGTON

Concurrency and Processes

L21: Concurrency Intro

Multi-Process Program

A

4

Stack

v

Stack

Stack

v

Stack

\

Y
A

Stack

v

Shared Libraries

Y
A

Stack

?

Shared Libraries

Y
A

Heap (malloc/free)

?

Shared Libraries

Read/Write Segment
.data, .bss

Heap (malloc/free)

?

Read-Only Segment
.text, .rodata

Read/Write Segment
.data, .bss

Heap (malloc/free)

Read-Only Segment
.text, .rodata

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

CSE333, Summer 2025



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Creating New Processes

pid t fork(void);
«» Creates a new process (the “child”) that is a clone of the
current process (the “parent”)

« Primarily used in two patterns:

= Adding concurrency to an existing program, for instance a web server

- fork a child, then that child executes a subroutine
= Starting another program, for instance using a shell

- fork a child, then that child uses exec to swap it’s executable for another.



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

fork () and Address Spaces

OXFF...FF
« A process executes within an

address space §P =

= Process tracks its current state using
the stack pointer (SP) and program
counter (PC)

2 ==

0x00...00

10



YA UNIVERSITY of WASHINGTON

L23: Concurrency and Processes

fork () and Address Spaces

» fork () causes the
OS to clone the SE
process state

= The copies of the
memory segments are
(nearly) identical

= The new process has
copies of the parent’s
data, stack-allocated
variables, open file
descriptors, etc.

Stack

v
}

Shared Libraries

t

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

PARENT

<D
N r

NC =

fork ()

CSE333, Summer 2025

Stack

v
}

Shared Libraries

t

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

CHILD
11



YA UNIVERSITY of WASHINGTON

Fork does *not* clone
threads SE

= Only the thread that

SE

called fork is duplicated

If the parent had
multiple stacks for
threads, the child only
has one.

This can be a source of
bugs; try to only use
concurrent processes

or threads, not both. ;.

L23: Concurrency and Processes

fork () and Address Spaces

Stack

\

Stack

v
A

Shared Libraries

t

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

PARENT

<D
) 1%

D

fork ()

CSE333, Summer 2025

Stack

v
}

Shared Libraries

t

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

CHILD

12




W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

fork ()

¢ fork () has peculiar semantics

= The parent invokes fork ()

fork ().

™,

13



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

fork ()

¢ fork () has peculiar semantics
= The parent invokes fork ()

= The OS clones the parent

clone

~ 7

ON)

14



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

fork ()

¢ fork () has peculiar semantics
= The parent invokes fork ()

= The OS clones the parent

= Both the parent and the child return

from fork child pidif /ﬁo

« Only return value differs:
— Parent receives child’s pid

— Child receives a 0

15



CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L23: Concurrency and Processes

Ending a fork()

% Since all processes are launched through fork (),

parents must handle the exit codes of their children
& |pid t waitpid(pid t pid, 1int* status, int options);

¢ pid: the child pid to wait for
= -1 means wait for any child
= Can also be one of a few other values (see man pages)

¢ status: an output parameter for the child return code

« Returns the process id of the child that finished

= -1 on error

16



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Ending a fork()

O
L. %4

pid t waitpid(pid t pid, int* status, int options);

Usually 0; can be used to not
block or some other esoteric
options (see man page)

If the parent calls waitpid () before the child
terminates, it will block until the child is done

If the child terminates first, it will not clean up fully until
the parent calls waitpid ()

= called becoming a “zombie”.

Can also wait for any child to exit with:

=lpid t wait(int* status);

17



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

fork ()

See:
fork example.cc

https://courses.cs.washington.edu/courses/cse333/25su/lecture/23-processes—example

18



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Concurrent Server with Processes

+ The parent process blocks on accept (), waiting for a

new client to connect
<+ When a new connection arrives, the parent calls fork () to create a
child process

< The child process handles that new connection and exit ()’s when
the connection terminates

20



CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L23: Concurrency and Processes

Concurrent Server with Processes

+ Remember that children become “zombies” after

termination
» The OS is waiting for someone to read their exit code

before getting rid of them

Two ways to handle this:
= Option A: Parent calls wait () to “reap” children and receive
their exit codes.

= Option B: Use the double-fork trick

21



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

server

22



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

client

(@)
%
O@
02

23



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

client

server
"y fork () child
server B

24



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

client

* - ~
_Y fork () grandchild

_—’

server

server

25



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

client server

child exit ()’s/parentwait ()’s

server

26



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

client server
- parent closes its
server . .
client connection

27



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

. - >
client server
|

server

28



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

. o >
client server
<+ H

server [

—

:» fork () child

-

‘x, fork () grandchild
< -~ exit()

—

<
server |l

server

client

29



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

. o >
client server
<+ H

server

] -, >
client server
- m

30



YA UNIVERSITY of WASHINGTON

Double-fork Trick

server

server

server

. |
client
client

server

L23: Concurrency and Processes

client

client

client

client

client

client

ALY AY Y Y

A'Y

CSE333, Summer 2025

server

server

server

server

server

server




W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Double-fork Trick

<+ With the double fork trick:

= There’s no parent to read the exit code

= Therefore the OS knows to clean it up right away.

33



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Concurrent Server with Processes

See:
searchserver processes/searchserver.cc
https://courses.cs.washington.edu/courses/cse333/25su/lecture/23-processes—example

34



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

How Fastis fork () ?

See:
forklatency.cc
threadlatency.cc

https: courses.cs.washington.edu/courses/cse333/25su/lecture/23-processes—example

35



YA UNIVERSITY of WASHINGTON

L23: Concurrency and Processes

CSE333, Summer 2025

How Fastis fork ()?

+ ~0.2ms per fork*

= Maximum of (1000/0.2) = 5,000 connections/sec/core
= ~430 million connections/day/core
. This is fine for most servers

- Two slow for super-high-traffic front-line web services
— Facebook served ~750 billion page views per day in 2013!

— Would need 2k cores just to handle £ork (), i.e. without doing any work
for each connection

* Exact past measurements are not indicative of future performance, just their rough ratios -
actual measurement depends on hardware and software versions.

36



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

How Fastis pthread create()?

+ ~0.018ms per thread create*

= Maximum of (1000/0.018) = 56,000 connections/sec/core
= ~4.8 billion connections/day/core

« Much faster, but writing safe multithreaded code is really
hard

* Exact past measurements are not indicative of future performance, just their rough ratios -
actual measurement depends on hardware and software versions.

37



w UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Aside: Thread/Process Pools

« Inreal servers, we’d like to avoid overhead needed to
create a new thread or process for every request

+ ldea: Thread/Process Pools

= Create a fixed set of worker threads or processes on server startup
and put them in a queue

= When a request arrives, remove the first worker thread from the
gueue and assign it to handle the request

= When a worker is done, it places itself back on the queue and
then sleeps until dequeued and handed a new request

+ Provides faster client connection acceptances and
more control over total resource usage.

38



W UNIVERSITY of WASHINGTON L23: Concurrency and Processes CSE333, Summer 2025

Don’t Forget

hw4 due Wednesday night (August 20th)

= Usual late days (2 max) apply if you have any remaining

Final exam Fri. August 22nd, 1:10-2:10, HRC 155

Please nominate great TAs for the Bandes award when
nominations are available

Course evals are available

Section this week is an exam review... show up!

Office hours this week get you extra points on the final

39



