
CSE333, Summer 2025L23: Concurrency and Processes

Concurrency: Processes
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist



CSE333, Summer 2025L23: Concurrency and Processes

Administrivia

❖ hw4 due Wednesday night

▪ Usual late days (2 max) apply if you have any remaining

2

❖ Final exam Fri. August 22nd, 1:10-2:10, HRC 155

▪ Topic list on the web; exam will mostly cover 2nd half of the

quarter

▪ Old exams also available on the website.

▪ Closed book but you may have a 3x5 card with handwritten notes

• Blank cards available after class

❖ Last exercise due this morning woohoo!



CSE333, Summer 2025L23: Concurrency and Processes

Administrivia

3

❖ Course evaluations open as of Friday

▪ Your feedback fuels me

▪ https://uw.iasystem.org/survey/311914

❖ Section this week is an exam review… show up, and bring

exam questions!



CSE333, Summer 2025L23: Concurrency and Processes

Administrivia

4

❖ Extra final points for coming to office hours this week

▪ +5 points on the final (out of 100), but can’t go above

100 total

▪ Must go to an existing, in-person office hours and bring

a problem set to work on; either from the

extra-problems in the slides, or an old final question

▪ Make sure the staff member writes down your name



CSE333, Summer 2025L23: Concurrency and Processes

Search Server Versions

5

Reference: Computer Systems: A Programmer’s

Perspective, Chapter 12 (CSE 351 book)

❖ We’ve been looking at different searchserver
implementations

▪ Sequential

▪ Concurrent via dispatching threads: pthread_create()

▪ Concurrent via forking processes: fork()



CSE333, Summer 2025L21: Concurrency Intro

❖ To implement a “process”, the operating system gives us:

▪ Resources such as file handles and sockets

▪ Call stack + registers to support (eg, PC, SP)

▪ Virtual memory (page tables, TLBs, etc…)

6

bucket = hash(word);
hitlist = file.read(bucket);

foreach hit in hitlist {
doclist.append(file.read(hit));

}

“Worker” 2“Worker” 1

Concurrency and Processes

❖ But what if we want more than the minimum

❖ Minimal set to implement concurrency: Call stack and

registers



CSE333, Summer 2025L21: Concurrency Intro

7

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

Stack

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

Stack

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

Stack

Concurrency and Processes

Multi-Process Program



CSE333, Summer 2025L23: Concurrency and Processes

Creating New Processes

❖ Creates a new process (the “child”) that is a clone of the

current process (the “parent”)

9

pid_t fork(void);

❖ Primarily used in two patterns:

▪ Adding concurrency to an existing program, for instance a web server

• fork a child, then that child executes a subroutine

▪ Starting another program, for instance using a shell

• fork a child, then that child uses exec to swap it’s executable for another.



CSE333, Summer 2025L23: Concurrency and Processes

fork() and Address Spaces

❖ A process executes within an

address space

10

0xFF…FF

0x00…00

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

▪ Process tracks its current state using

the stack pointer (SP) and program

counter (PC)



CSE333, Summer 2025L23: Concurrency and Processes

fork() and Address Spaces

❖ fork() causes the

OS to clone the

process state

11

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

▪ The copies of the

memory segments are

(nearly) identical

▪ The new process has

copies of the parent’s

data, stack-allocated

variables, open file

descriptors, etc.



CSE333, Summer 2025L23: Concurrency and Processes

fork() and Address Spaces

❖ Fork does *not* clone

threads

12

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

OS kernel [protected]

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP

PC

fork()PARENT CHILD

▪ Only the thread that

called fork is duplicated

▪ If the parent had

multiple stacks for

threads, the child only

has one.

▪ This can be a source of

bugs; try to only use

concurrent processes

or threads, not both.

Stack
SP

PC



CSE333, Summer 2025L23: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

13

parent

OS

fork()



CSE333, Summer 2025L23: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

14

parent child

OS

clone



CSE333, Summer 2025L23: Concurrency and Processes

fork()

❖ fork() has peculiar semantics

▪ The parent invokes fork()

▪ The OS clones the parent

▪ Both the parent and the child return

from fork

15

parent child

OS

child pid 0

• Only return value differs:

– Parent receives child’s pid

– Child receives a 0



CSE333, Summer 2025L23: Concurrency and Processes

Ending a fork()

16

❖ Since all processes are launched through fork(),
parents must handle the exit codes of their children

❖ pid_t waitpid(pid_t pid, int* status, int options);

❖ pid: the child pid to wait for
▪ -1 means wait for any child

▪ Can also be one of a few other values (see man pages)

❖ status: an output parameter for the child return code

❖ Returns the process id of the child that finished
▪ -1 on error



CSE333, Summer 2025L23: Concurrency and Processes

Ending a fork()

17

❖ pid_t waitpid(pid_t pid, int* status, int options);

❖ If the parent calls waitpid() before the child

terminates, it will block until the child is done

❖ If the child terminates first, it will not clean up fully until

the parent calls waitpid()
▪ called becoming a “zombie”.

Usually 0; can be used to not
block or some other esoteric

options (see man page)

❖ Can also wait for any child to exit with:

▪ pid_t wait(int* status);



CSE333, Summer 2025L23: Concurrency and Processes

fork()

See:

fork_example.cc
https://courses.cs.washington.edu/courses/cse333/25su/lecture/23-processes-example

18



CSE333, Summer 2025L23: Concurrency and Processes

Concurrent Server with Processes

❖ The parent process blocks on accept(), waiting for a
new client to connect

20

❖ When a new connection arrives, the parent calls fork() to create a

child process

❖ The child process handles that new connection and exit()’s when
the connection terminates



CSE333, Summer 2025L23: Concurrency and Processes

Concurrent Server with Processes

21

❖ Remember that children become “zombies” after

termination

❖ The OS is waiting for someone to read their exit code

before getting rid of them

❖ Two ways to handle this:

▪ Option A: Parent calls wait() to “reap” children and receive

their exit codes.

▪ Option B: Use the double-fork trick



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

22

server



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

23

client

server

connect

accept()



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

24

client

server

server
fork() child



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

25

client server

server

server

fork() grandchild



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

26

client server

server

child exit()’s / parent wait()’s



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

27

client server

server
parent closes its
client connection



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

28

client server

server



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

29

client server

server

server

server

client

fork() grandchild
exit()

fork() child



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

30

client server

client server

server



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

31

client server

client server

client server

client server

client server

client server

client server

client server

client server

server



CSE333, Summer 2025L23: Concurrency and Processes

Double-fork Trick

❖ With the double fork trick:

▪ There’s no parent to read the exit code

▪ Therefore the OS knows to clean it up right away.

33



CSE333, Summer 2025L23: Concurrency and Processes

Concurrent Server with Processes

See:

searchserver_processes/searchserver.cc
https://courses.cs.washington.edu/courses/cse333/25su/lecture/23-processes-example

34



CSE333, Summer 2025L23: Concurrency and Processes

How Fast is fork()?

See:

forklatency.cc
threadlatency.cc

https://courses.cs.washington.edu/courses/cse333/25su/lecture/23-processes-example

35



CSE333, Summer 2025L23: Concurrency and Processes

How Fast is fork()?

36

❖ ~0.2ms per fork*

▪ Maximum of (1000/0.2) = 5,000 connections/sec/core

▪ ~430 million connections/day/core
• This is fine for most servers

• Two slow for super-high-traffic front-line web services
– Facebook served ~750 billion page views per day in 2013!

– Would need 2k cores just to handle fork(), i.e. without doing any work
for each connection

* Exact past measurements are not indicative of future performance, just their rough ratios -

actual measurement depends on hardware and software versions.



CSE333, Summer 2025L23: Concurrency and Processes

How Fast is pthread_create()?

37

❖ ~0.018ms per thread create*
▪ Maximum of (1000/0.018) = 56,000 connections/sec/core

▪ ~4.8 billion connections/day/core

❖ Much faster, but writing safe multithreaded code is really

hard

* Exact past measurements are not indicative of future performance, just their rough ratios -

actual measurement depends on hardware and software versions.



CSE333, Summer 2025L23: Concurrency and Processes

Aside: Thread/Process Pools

❖ In real servers, we’d like to avoid overhead needed to

create a new thread or process for every request

38

❖ Idea: Thread/Process Pools

▪ Create a fixed set of worker threads or processes on server startup

and put them in a queue

▪ When a request arrives, remove the first worker thread from the

queue and assign it to handle the request

▪ When a worker is done, it places itself back on the queue and

then sleeps until dequeued and handed a new request

❖ Provides faster client connection acceptances and
more control over total resource usage.



CSE333, Summer 2025L23: Concurrency and Processes

Don’t Forget

❖ hw4 dueWednesday night (August 20th)

▪ Usual late days (2 max) apply if you have any remaining

39

❖ Final exam Fri. August 22nd, 1:10-2:10, HRC 155

❖ Please nominate great TAs for the Bandes award when

nominations are available

❖ Course evals are available

❖ Section this week is an exam review… show up!

❖ Office hours this week get you extra points on the final


