
CSE333, Summer 2025L22: Concurrency and Threads

Concurrency: Threads
CSE 333

Guest Lecturer: Audrey Seo

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025L22: Concurrency and Threads

Administrivia

❖ Ex17 due Monday - last exercise!

2

❖ HW4 due Wednesday night

❖ Final exam in class on Friday (1 hour)

❖ Updated topic list and old exams on course web now

■ Some old finals are 1-hour summer exams, some are 2-hour

regular quarters – don’t panic if you can’t finish those in 1 hour

❖ Review Q&A in sections next week

❖ Extra points for coming to office hours next week!

■ Same rules as midterm, see Wednesdays slides for details

CSE333, Summer 2025L22: Concurrency and Threads

Administrivia

❖ More on HW4… (due Wednesday night next week!)

3

▪ Usual late days (max 2) available if you have any left

▪ Mime types (in server query replies): hw4 server only needs to

have ones that match the files that it will actually send (including

pictures)

▪ Remember – don’t modify Makefiles or header files

❖ Course evaluations open today
▪ https://uw.iasystem.org/survey/311914

CSE333, Summer 2025L22: Concurrency and Threads

Some Common hw4 Bugs

❖ Your server works, but is really, really slow

▪ Check the 2nd argument to the QueryProcessor constructor

4

❖ Funny things happen after the first request

▪ Make sure you’re not destroying the HTTPConnection object

too early (e.g. falling out of scope in a while loop)

▪ Be sure to check for data in the buffer – might be an http request

(or part of one) already there left over from a previous read

❖ Server crashes on a blank request

▪ Make sure that you handle the case that read() (or

WrappedRead()) returns 0

CSE333, Summer 2025L22: Concurrency and Threads

Previously…

❖ We implemented a search server but it was sequential

5

▪ Processes requests one at a time regardless of client delays

▪ Terrible performance, resource utilization

❖ Servers should be concurrent

▪ Different ways to process multiple queries simultaneously:

• Issue multiple I/O requests simultaneously

• Overlap the I/O of one request with computation of another

• Utilize multiple CPUs or cores

• Mix and match as desired

CSE333, Summer 2025L22: Concurrency and Threads

Outline (next two lectures)

❖ We’ll look at different searchserver implementations

▪ Sequential

▪ Concurrent via dispatching threads: pthread_create()

▪ Concurrent via forking processes: fork()

6

❖ We won’t look at:

▪ Concurrent via non-blocking, event-driven I/O:

select()

Reference: Computer Systems: A Programmer’s Perspective, Chapter 12 (CSE 351 book)

CSE333, Summer 2025L22: Concurrency and Threads

Sequential

❖ Pseudocode:

❖ See searchserver_sequential/ for more details

7

listen_fd = Listen(port);

while (1) {
client_fd = accept(listen_fd);
buf = read(client_fd);
resp = ProcessQuery(buf);
write(client_fd, resp);
close(client_fd);

}

CSE333, Summer 2025L22: Concurrency and Threads

Threads

❖ Threads are like lightweight processes

9

▪ They execute concurrently like processes

• Multiple threads can run simultaneously on multiple CPUs/cores

▪ Unlike processes, threads cohabitate the same address space

• Threads within a process see the same heap and globals and can

communicate with each other through variables and memory

– But, they can interfere with each other – need synchronization for shared

resources

• Each thread has its own stack

CSE333, Summer 2025L22: Concurrency and Threads

Threads and Address Spaces

❖ Before creating a thread

▪ One thread of execution running

in the address space

• One PC, stack, SP

10

OS kernel [protected]

Stack
parent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP
parent

PC
parent

▪ That main thread invokes a

function to create a new thread

• Typically pthread_create()

CSE333, Summer 2025L22: Concurrency and Threads

Threads and Address Spaces

❖ After creating a thread

▪ Two threads of execution running

in the address space

11

OS kernel [protected]

Stack
parent

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

SP
parent

PC
parent

Stack
childSP

child

PC
child

• Original thread (parent) and new

thread (child)

• New stack created for child thread

• Child thread has its own PC, SP

▪ Both threads share the other

segments (code, heap, globals)

• They can cooperatively modify

shared data

CSE333, Summer 2025L22: Concurrency and Threads

Multithreaded Server: Architecture

❖ A parent thread creates a new thread to handle each

incoming connection

12

▪ The child thread handles the new connection and subsequent I/O,

then exits when the connection terminates

CSE333, Summer 2025L22: Concurrency and Threads

Multithreaded Server

13

client

server

connect accept()

CSE333, Summer 2025L22: Concurrency and Threads

Multithreaded Server

14

client

server

pthread_create()

CSE333, Summer 2025L22: Concurrency and Threads

Multithreaded Server

15

client

server

accept()

client
co
nn
ec
t

CSE333, Summer 2025L22: Concurrency and Threads

Multithreaded Server

16

client

client

server

pthread_create()

CSE333, Summer 2025L22: Concurrency and Threads

Multithreaded Server

17

client

client

client

client

client

client
server

shared
data

structures

CSE333, Summer 2025L22: Concurrency and Threads

POSIX Threads (pthreads)

❖ The POSIX APIs for dealing with threads

18

❖ Declared in pthread.h
▪ Not part of the C/C++ language (unlike Java)

❖ To enable support for multithreading, must include

-pthread flag when compiling and linking with gcc
command

CSE333, Summer 2025L22: Concurrency and Threads

pthreads Threads: Creation

❖

19

int pthread_create(
pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg);

❖ void pthread_exit(void* retval);

▪ Creates a new thread into *thread, with attributes *attr

▪ Returns a status code (0 or an error number)

▪ The new thread runs start_routine(arg)

▪ Equivalent of exit(retval) for a thread instead of a process

▪ thread automatically exits when it returns from

start_routine()

For advanced usage;
always nullptr in this class.

CSE333, Summer 2025L22: Concurrency and Threads

pthreads Threads: Afterwards

❖

▪ Waits for thread to terminate

20

❖

▪ Mark thread as detached ; will clean up its resources as soon as it

terminates

int pthread_detach(pthread_t thread);

int pthread_join(pthread_t thread,
void** retval);

▪ Exit status of the terminated thread is placed in **retval

CSE333, Summer 2025L22: Concurrency and Threads

pthreads Example

21

See:

thread_example.cc
https://courses.cs.washington.edu/courses/cse333/25su/lecture/22-threads-example

CSE333, Summer 2025L22: Concurrency and Threads

Concurrent Server via Threads

❖ See searchserver_threads/ for details

22

❖ Notes:

▪ When calling pthread_create(), start_routine points

to a function that takes only one argument (a void*)

• To pass complex arguments into the thread, create a struct to bundle

the necessary data

▪ How do you properly handle memory management?

• Who allocates and deallocates memory?

• How long do you want memory to stick around?

CSE333, Summer 2025L22: Concurrency and Threads

Data Race Example

❖ If your fridge has no milk,

then go out and buy some more

24

if (!milk) {

buy milk

}

! !

❖ What could go wrong?

❖ If you live alone:

❖ If you live with a roommate:
Too much milk!

CSE333, Summer 2025L22: Concurrency and Threads

Threads and Data Races

❖ What happens if two threads try to mutate the same data

structure?

26

▪ They might interfere in painful, non-obvious ways, depending on

the specifics of the data structure

❖ Example: two threads try to push an item onto the head of

a linked list at the same time

▪ Could get “correct” answer

▪ Could get different ordering of items

▪ Could break the data structure!

▪ Likely will get different results each time you run the program – a

debugging nightmare

CSE333, Summer 2025L22: Concurrency and Threads

Synchronization

❖ Synchronization is the act of preventing two (or more)

concurrently running threads from interfering with each

other when operating on shared data

27

▪ Need some mechanism to coordinate the threads

• “Let me go first, then you can go”

▪ Many different coordination mechanisms have been invented

(see CSE 451)

CSE333, Summer 2025L22: Concurrency and Threads

Synchronization

28

❖ It turns out, safe synchronization is impossible with the

tools we’ve seen so far

❖ We need special support from the hardware for threads to

interact safely

❖ The solution: locks!

CSE333, Summer 2025L22: Concurrency and Threads

Synchronization

29

❖ A lock combines the “check note” and “write note”

operations into one atomic operation

▪ Atomic: cannot be interleaved with another thread

❖ Use a lock to grant access to a critical section so that only

one thread can operate there at a time

Just means a piece
of code you protect

with a lock

CSE333, Summer 2025L22: Concurrency and Threads

Lock Synchronization

❖ Two main operations on locks:

30

// non-critical code

lock.acquire();
// critical section
lock.release();

// non-critical code

loop/idle
if locked

❖ Pseudocode:

▪ Lock Acquire: wait until the lock is free, then take it

▪ Lock Release:

• Release the lock

• If other threads are waiting, wake exactly one up to pass lock to

CSE333, Summer 2025L22: Concurrency and Threads

Milk Example – What is the Critical Section?

❖ What if we use a lock on the

refrigerator?

▪ Probably overkill – what if

roommate wanted to get eggs?

31

fridge.lock()
if (!milk) {

buy milk
}
fridge.unlock()

milk_lock.lock()
if (!milk) {

buy milk
}
milk_lock.unlock()

❖ For performance reasons, only

put what is necessary in the

critical section

▪ Only lock the milk

▪ But lock all steps that must run

uninterrupted (i.e., must run

as an atomic unit)

CSE333, Summer 2025L22: Concurrency and Threads

Beware of Deadlocks

32

❖ What if our roommates want to go to the store only when

there is more than one thing to get?

milk_lock.lock()
if (!milk) {

egg_lock.lock()
if (!eggs) {

buy milk
buy eggs

}
egg_lock.unlock()

}
milk_lock.unlock()

egg_lock.lock()
if (!egg) {

milk_lock.lock()
if (!milk) {

buy milk
buy eggs

}
milk_lock.unlock()

}
egg_lock.unlock()

CSE333, Summer 2025L22: Concurrency and Threads

Synchronization

❖ Goals of synchronization:

33

▪ Liveness – ability to execute in a timely manner

(informally, “something good eventually happens!”)

▪ Safety – avoid unintended interactions with shared data structures

(informally, “nothing bad ever happens”)

CSE333, Summer 2025L22: Concurrency and Threads

▪ pthreads (#include <pthread.h>) defines datatype
pthread_mutex_t

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)

34

❖ pthread_mutex_unlock()

▪ Releases the lock

int pthread_mutex_unlock(pthread_mutex_t* mutex);

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

int pthread_mutex_lock(pthread_mutex_t* mutex);

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

int pthread_mutex_init(pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr);

CSE333, Summer 2025L22: Concurrency and Threads

▪ pthreads (#include <pthread.h>) defines datatype
pthread_mutex_t

pthreads and Locks

❖ Another term for a lock is a mutex (“mutual exclusion”)

35

❖ pthread_mutex_unlock()

▪ Releases the lock

int pthread_mutex_unlock(pthread_mutex_t* mutex);

❖ pthread_mutex_lock()

▪ Acquire the lock – blocks if already locked

int pthread_mutex_lock(pthread_mutex_t* mutex);

❖ pthread_mutex_init()

▪ Initializes a mutex with specified attributes

int pthread_mutex_init(pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr);

For advanced usage; always
nullptr in this class.

CSE333, Summer 2025L22: Concurrency and Threads

But I only want to read the data!

❖ Is a lock needed when reading shared data?

36

▪ No if all threads only read the shared data

▪ Yes if any thread could potentially write to the shared data!

❖ Why?

▪ The C and C++ standards do not guarantee that writes of

multi-byte data are indivisible when observed from other

asynchronous threads

• i.e., writing multiple bytes to memory might involve multiple

updates to caches or backing stores

• Which means a reading thread might be able to see the results of

a partial, not-yet-finished update if it does not use locks

CSE333, Summer 2025L22: Concurrency and Threads

But I only am reading the data!

❖ Example: Suppose shared 32-bit int x is initially

0x0000FFFF

37

❖ Thread 1 properly updates x using locks:
acquire x_lock;

x = x + 1;

release x_lock;

❖ Thread 2 only reads x and outputs it without locking:

▪ Might print 0x0000FFFF (old value)

▪ Might print 0x00010000 (new value)

▪ Might print 0x0001FFFF (partially updated value) !!!!!

CSE333, Summer 2025L22: Concurrency and Threads

But I only am reading the data!

38

❖ How to fix:

▪ Thread 2 must acquire x_lock before printing and

release it afterwards

❖ In practice…

▪ On modern x86/arm/etc. processors this won’t happen for things

like aligned small ints that don’t span cache boundaries, so you

probably won’t see the bug unless you’re using larger data

structures – but the C/C++ language does not guarantee this

behavior! Use locks or atomics (see C/C++ refs for details) if there

are any writers to a shared variable!!

CSE333, Summer 2025L22: Concurrency and Threads

C++11 Threads

❖ C++11 added threads and concurrency to its libraries

▪ These might be built on top of <pthread.h>, but also might

not be

39

❖ Definitely use in C++11 code if local conventions allow, but

pthreads will be around for a long, long time

▪ Use pthreads in our exercise

CSE333, Summer 2025L22: Concurrency and Threads

C++11 Threads

❖ C++11 threads headers:

▪ <thread> – thread objects

▪ <mutex> – locks to handle critical sections

▪ <condition_variable> – used to block objects until notified

to resume

▪ <atomic> – indivisible, atomic operations

▪ <future> – asynchronous access to data

40

CSE333, Summer 2025L22: Concurrency and Threads

Don’t forget!

❖ Ex17 dueMonday August 18th - last exercise!

41

❖ HW4 dueWednesday night August 20th

❖ Final exam in class on Friday August 22nd (1 hour)

❖ Extra points for coming to office hours next week!

■ Same rules as midterm (see slides from 7/16)

