W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Client- and Server-side Programming
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Audrey Seo

Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming

Administrivia

+« New exercise 15 out today
= Client-side network programming

= Due Monday, 10 am

Exercise 16 also out today

= Server-side network programming

7/
L X4

* Due Wednesday, 10am

+ hw4 posted now — due Wednesday August 20th

*

= Web server for our search engine code. Demo today.

= Starter code pushed sometime tomorrow

- Pull on your repo before trying to submit hw3 with late days

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Lecture Outline

¢ Client-side Programming
« Server-side Programming

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming

Socket API: Client TCP Connection

« There are five steps:

1)

2)
3)
4)
5)

Figure out the IP address and port to connect to (DNS)

Create a socket
connect () the socket to the remote server
read () andwrite () data using the socket

Close the socket

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Step 2: Creating a Socket

O

* | 1nt socket(int domain, int type, int protocol);

= Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error socket.cc

D

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv)y {
int socket fd = socket (AF INET, SOCK STREAM, O0);
1f (socket fd == -1) {
std::cerr << strerror (errno)
return EXIT FAILURE;

<< std::endl;

} General function

close (socket fd); Same as POSIX for handling errno
return EXIT SUCCESS; fHeI/C)

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming

Step 3: Connect to the Server

«» The connect () system call establishes a connection to a

remote host

int connect(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

- sockfd: Socket file description from Step 2

- addr and addrlen: Usually from one of the address structures

returned by getaddrinfo in Step 1 (DNS lookup)
- Returns O on success and -1 on error

¢ connect () may take some time to return

= |tis a blocking call by default

= The network stack within the OS will communicate with the
remote host to establish a TCP connection to it

- This involves ~2 round trips across the network

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Step 4: read ()

If there is data that has already been received by the
network stack, then read will return immediately with it

= read () might return with /ess data than you asked for

If there is no data waiting for you, by default read ()
will block until something arrives

= This might cause deadlock!

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Step 4: write ()

¢ write () enqueues your data in a send buffer in the OS
and then returns

= The OS transmits the data over the network in the background

= When write () returns, the receiver probably has not yet
received the data!

« If there is no more space left in the send buffer, by default
write () will block

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Step 5: close ()

O

* |int close(int fd);

= Nothing special here —it’s the same function as with file /O

= Shuts down the socket and frees resources and file descriptors
associated with it on both ends of the connection

10

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

getaddrinfo

See:
connect.cc
sendreceive.cCcC

https: courses.cs.washington.edu/courses/cse333/25su/lecture/19-network-client+server—-example

11

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Lecture Outline

% Client-side Programming
¢ Server-side Programming

12

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Socket API: Client TCP Connection

« There are five steps to connect as a client:
1) Figure out the IP address and port to connect to
2) Create a socket
3) connect () the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

13

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Socket API: Server TCP Connection

« Pretty similar to clients, but with additional steps:

1)
2)
3)
4)
5)
6)

7)
8)

Figure out the IP address and port on which to listen
Create a socket

core o the-socketto-theremoteserver
bind () the socket to the address(es) and port

Tell the socket to 1isten() for incoming clients
accept () aclient connection

read () andwrite () to that connection

close () the client socket

14

w UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Servers

« Servers can have multiple IP addresses (“multihoming”)

= Usually have at least one externally-visible IP address, as well as a
local-only address (127.0.0.1)
« The goals of a server socket are different than a client
socket

= Want to bind the socket to a particular port of one or more IP
addresses of the server

= Want to allow multiple clients to connect to the same port

« OS uses client IP address and port numbers to direct I/O to the
correct server file descriptor

15

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Step 1: Figure out IP address(es) & Port

+ Step 1: getaddrinfo () invocation may or may not be
needed (but we’ll use it)

= Do you know your IP address(es) already?

- Static vs. dynamic IP address allocation
- Even if the machine has a static IP address, don’t wire it into the code
— better to look it up dynamically or use a configuration file

= Can request listen on all local IP addresses by passing NULL as
hostname and setting AT PASSIVEinhints.ai flags

- Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

16

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Step 2: Create a Socket

«» Step 2: socket () callis same as before

= Can directly use constants or fields from result of
getaddrinfo ()

= Recall that this just returns a file descriptor — IP address and port
are not associated with socket yet

17

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Step 3: Bind the socket

% | int bind(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

= Looks nearly identical to connect () !

= Returns O on success, —1 on error

+» Some specifics for addr:
= Address family: 25 TNET or AF TNET6

- What type of IP connections can we accept?
+ POSIX systems can handle IPv4 clients via IPv6 so use AF' INET6 &

- AF UNSPEC doesn’t work as expected: it can bind to v4-only socket

= Port: portin network byte order (htons () is handy)
= Address: specify particular IP address or any IP address

-+ “Wildcard address” — INADDR ANY (IPv4), in6addr any (IPv6)
18

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Step 4: Listen for Incoming Clients

* |int listen(int sockfd, int backlog);

= Tells the OS that the socket is a listening socket that clients can
connect to

" backlog: maximum length of connection queue
- Gets truncated, if necessary, to defined constant SOMAXCONN

« The OS will refuse new connections once queue is full until server
accept ()s them (removing them from the queue)

= Returns O on success, —1 on error

= Clients can start connecting to the socket as soon as 1isten ()
returns

- Server can’t use a connection until you accept () it

19

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Example #1

+ See server bind listen.cc
= Takes in a port number from the command line

= Opens a server socket, prints info, then listens for connections for
20 seconds

- Can connect to it using netcat (nc)

21

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Step 5: Accept a Client Connection

O

% | int accept(int sockfd, struct sockaddr* addr,
socklen t* addrlen);

= Returns a new (different from sockfd), active, ready-to-use
socket file descriptor connected to a client (or —1 on error)
- sockfd must have been created, bound, and listening

- Pulls a queued connection or waits for an incoming one

* addr and addrlen are output parameters

- *addrlen should initially be setto sizeof (*addr), gets
overwritten with the size of the client address

- Address information of client is written into *addr
— Use inet ntop () to get the client’s printable IP address

— Use getnameinfo () to do areverse DNS lookup on the client

22

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Example #2

¢+ See server accept rw close.cc
= Gets a port number from the command line

= Opens a server socket, prints info, then listens for connections

- Can connect to it using netcat (nc)

= Accepts connections as they come

* Echoes any data the client sends to it on stdout and also sends
it back to the client

23

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Something to Note

« Our server code is not concurrent
= Single thread of execution
= The thread blocks while waiting for the next connection

= The thread blocks waiting for the next message from the
connection

« A crowd of clients is, by nature, concurrent

= While our server is handling the next client, all other clients are
stuck waiting for it (=

24

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

hw4 demo

« Multithreaded Web Server (333gle)

= Don’t worry — multithreading has mostly been written for you
" . /http333d <port> <static files> <indices+>

= Some security bugs to fix, too

25

W UNIVERSITY of WASHINGTON L19: Client- and Server-side Programming CSE333, Summer 2025

Extra Exercise #1

« Write a program that:
= Creates a listening socket that accepts connections from clients
= Reads a line of text from the client
= Parses the line of text as a DNS name
= Does a DNS lookup on the name

= Writes back to the client the list of IP addresses associated with
the DNS name

= Closes the connection to the client

26

