
CSE333, Summer 2025L18: Networks - Sockets and DNS

Sockets and DNS
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025L18: Networks - Sockets and DNS

Administrivia

❖ HW3 due tomorrow night, 11pm

2

❖ Exercise 15 due Monday

▪ Client-side TCP connection

▪ Plus late days if needed and you have them remaining

• You can check Canvas to see how many late days you have left

▪ Don’t forget about comments on your helper functions

• Many people miss this and lose points

▪ Any last-minute questions? observations?

CSE333, Summer 2025L18: Networks - Sockets and DNS

Lecture Outline

❖ Sockets API

▪ Sockets Overview

▪ Network Addresses

▪ API Functions

❖ DNS

3

CSE333, Summer 2025L18: Networks - Sockets and DNS

Files and File Descriptors

❖ Remember open(), read(), write(), and
close()?
▪ POSIX system calls for interacting with files

4

▪ open() returns a file descriptor

• An integer that represents an open file

• This file descriptor is then passed to read(), write(), and
close()

▪ Inside the OS, the file descriptor is used to index into a table that

keeps track of any OS-level state associated with the file, such as

the file position

CSE333, Summer 2025L18: Networks - Sockets and DNS

Networks and Sockets

❖ UNIX likes to make all I/O look like file I/O

▪ You use read() and write() to communicate with remote

computers over the network!

5

▪ A file descriptor used for network communications is called a

socket

▪ Just like with files:

• Your program can have multiple network channels open at once

• You need to pass a file descriptor to read() and write() to let the

OS know which network channel to use

CSE333, Summer 2025L18: Networks - Sockets and DNS

File Descriptor Table

OS’s File Descriptor Table for the Process

File
Descriptor

Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP

socket
local: 128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP

socket
local: 128.95.4.33:80

remote: 102.12.3.4:5544

Web Server

in
d
ex
.h
tm

l

p
ic
.p
n
g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

7

CSE333, Summer 2025L18: Networks - Sockets and DNS

Types of Sockets

❖ Stream sockets

▪ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, SCTP, or other stream transports

8

❖ Datagram sockets

▪ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

❖ Raw sockets

▪ For layer-3 communication (raw IP packet manipulation)

CSE333, Summer 2025L18: Networks - Sockets and DNS

Stream Sockets

❖ Typically used for client-server communications

▪ Client: An application that establishes a connection to a server

▪ Server: An application that receives connections from clients

client server

client server

9

client server

▪ Can also be used for other forms of communication like

peer-to-peer

1) Establish connection:

2) Communicate:

3) Close connection:

CSE333, Summer 2025L18: Networks - Sockets and DNS

Datagram Sockets

❖ Often used as a building block

▪ No flow control, ordering, or reliability, so used less frequently

host

host host

host

host

host host

host

10

1) Create sockets:

2) Communicate:

CSE333, Summer 2025L18: Networks - Sockets and DNS

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

11

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

CSE333, Summer 2025L18: Networks - Sockets and DNS

Lecture Outline

❖ Sockets API

▪ Sockets Overview

▪ Network Addresses

▪ API Functions

❖ DNS

12

CSE333, Summer 2025L18: Networks - Sockets and DNS

IPv4 Network Addresses

❖ An IPv4 address is a 4-byte tuple

▪ For humans, written in “dotted-decimal notation”

▪ e.g. 128.95.4.1 (80:5f:04:01 in hex)

13

❖ IPv4 address exhaustion

▪ There are 232 ≈ 4.3 billion IPv4 addresses

▪ There are ≈ 8 billion people in the world (July 2024)

▪ There are ≈30 billion internet connected devices

CSE333, Summer 2025L18: Networks - Sockets and DNS

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ e.g. 2d01:00b8:f188:0000:0000:0000:0000:1f33

14

Written as eight “hextets”
(groups of four hex digits),

separated by colons

CSE333, Summer 2025L18: Networks - Sockets and DNS

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ e.g. 2d01:00b8:f188:0000:0000:0000:0000:1f33

15

Leading zeros within a group
can be omitted

2d01:b8:f188:0000:0000:0000:0000:1f33

CSE333, Summer 2025L18: Networks - Sockets and DNS

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ e.g. 2d01:00b8:f188:0000:0000:0000:0000:1f33

16

Consecutive groups of zeros can
be turned into a double colon

(can only be done for one group).

2d01:b8:f188:0000:0000:0000:0000:1f33

2d01:b8:f188::1f33

CSE333, Summer 2025L18: Networks - Sockets and DNS

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ e.g. 2d01:00b8:f188:0000:0000:0000:0000:1f33

17

▪ Transition is still ongoing

• When writing network code, we need to support both

• This unfortunately makes network programming more of a headache

▪ For compatibility, IPv4 addresses can be mapped to IPv6 addresses

128.95.4.1

::ffff:128.95.4.1

::ffff:805f:401

Decimal Hexadecimal

128 80

95 5f

4 04

1 01

CSE333, Summer 2025L18: Networks - Sockets and DNS

IPv4 Address Structures

18

// IPv4 4-byte address
struct in_addr {
uint32_t s_addr; // Address in network byte order

}; // (big endian)

// An IPv4-specific address structure
struct sockaddr_in {
sa_family_t sin_family; // Address family: AF_INET
in_port_t sin_port; // Port in network byte order
struct in_addr sin_addr; // IPv4 address
unsigned char sin_zero[8]; // Pad out to 16 bytes

};

family port addr zero

struct sockaddr_in:

1
6

0 2 4 8

CSE333, Summer 2025L18: Networks - Sockets and DNS

Working with Socket Addresses

20

❖ How to handle both IPv4 and IPv6?

// IPv6 16-byte address
struct in6_addr {
uint8_t s6_addr[16]

};

// An IPv6 address structure
struct sockaddr_in6 {
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_id;

};

// IPv4 4-byte address
struct in_addr {
uint32_t s_addr;

};

// An IPv4 address structure
struct sockaddr_in {
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[8];

};

▪ Use C structs for each, but make them somewhat similar

▪ Use defined constants to differentiate when to use each: AF_INET
for IPv4 and AF_INET6 for IPv6

CSE333, Summer 2025L18: Networks - Sockets and DNS

Generic Address Structures

21

// A mostly-protocol-independent address structure.
// Pointer to this is parameter type for socket system calls.
struct sockaddr {
sa_family_t sa_family; // Address family (AF_* constants)
char sa_data[14]; // Socket address (size varies

// according to socket domain)
};

❖ One struct defined for pointers to both

CSE333, Summer 2025L18: Networks - Sockets and DNS

Generic Address Structures

22

fam port flow addr scope

struct sockaddr_in6:

240 2 4 8 28

fam port addr zero

struct sockaddr_in:

160 2 4 8

int get_port(struct sockaddr* addr) {
return ((struct sockaddr_in*)addr)->port;

}

int process_addr(struct sockaddr* addr) {
if (addr->sa_family == AF_INET) {
...

} else if (addr->sa_family == AF_INET6) {
...

}
}

CSE333, Summer 2025L18: Networks - Sockets and DNS

Generic Address Structures

23

// A mostly-protocol-independent address structure.
// Pointer to this is parameter type for socket system calls.
struct sockaddr {
sa_family_t sa_family; // Address family (AF_* constants)
char sa_data[14]; // Socket address (size varies

// according to socket domain)
};

❖ struct sockaddr isn’t actually big enough to hold IPv6

addresses!

▪ Only generic when used as pointer

IPv6 addresses
are 16 bytes!

CSE333, Summer 2025L18: Networks - Sockets and DNS

Generic Address Structures

❖ Commonly create struct sockaddr_storage, then pass

pointer cast as struct sockaddr* to connect()
24

// A mostly-protocol-independent address structure.
// Pointer to this is parameter type for socket system calls.
struct sockaddr {

sa_family_t sa_family; // Address family (AF_* constants)
char sa_data[14]; // Socket address (size varies

// according to socket domain)
};

// A structure big enough to hold either IPv4 or IPv6 structs
struct sockaddr_storage {

sa_family_t ss_family; // Address family

// padding and alignment; don’t worry about the details
char __ss_pad1[_SS_PAD1SIZE];
int64_t __ss_align;
char __ss_pad2[_SS_PAD2SIZE];

};

❖ For storing addresses generically, we have struct
sockaddr_storage

CSE333, Summer 2025L18: Networks - Sockets and DNS

Lecture Outline

❖ Sockets API

▪ Sockets Overview

▪ Network Addresses

▪ API Functions

❖ DNS

25

CSE333, Summer 2025L18: Networks - Sockets and DNS

Working with Socket Addresses
❖ Structures, constants, and helper functions available in

#include <arpa/inet.h>

26

❖ Addresses stored in network byte order (big endian)

❖ Converting between host and network byte orders:

▪ uint32_t htonl(uint32_t hostlong);

▪ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order

• Also versions with ‘s’ for short (uint16_t instead)

❖ This is a C API: no string objects, exceptions, or references

CSE333, Summer 2025L18: Networks - Sockets and DNS

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts human-readable c-string representation (“presentation”)

to network byte ordered address

▪ Returns 1 (success), 0 (bad src), or -1 (error)

27

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr_in sa; // IPv4
struct sockaddr_in6 sa6; // IPv6

// IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).
inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

// IPv6 string to sockaddr_in6.
inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

return EXIT_SUCCESS;
}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);

CSE333, Summer 2025L18: Networks - Sockets and DNS

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts network addr in src into buffer dst of size size

28

#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr_in6 sa6; // IPv6
char astring[INET6_ADDRSTRLEN]; // IPv6

// IPv6 string to sockaddr_in6.
inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

// sockaddr_in6 to IPv6 string.
inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);
std::cout << astring << std::endl;

return EXIT_SUCCESS;
}

genstring.cc

const char* inet_ntop(int af, const void* src,
char* dst, socklen_t size);

> ./genstring
2001:db8:63b3:1::3490

CSE333, Summer 2025L18: Networks - Sockets and DNS

Lecture Outline

❖ Sockets API

▪ Sockets Overview

▪ Network Addresses

▪ API functions

❖ DNS

29

CSE333, Summer 2025L18: Networks - Sockets and DNS

Domain Name System

❖ People tend to use domain names like

“www.google.com”, not IP addresses

▪ The Sockets API lets you convert between the two

30

▪ It’s a complicated process, though:

• A given domain name can have many IP addresses

– An IP address will reverse map into at most one domain name

• A DNS lookup may require interacting with many DNS servers

❖ You can use the Linux program “dig” to explore DNS
▪ dig @server name type (+short)

• server: specific name server to query (optional)

• type: A (IPv4), AAAA (IPv6), ANY (includes all types)

CSE333, Summer 2025L18: Networks - Sockets and DNS

Dig example

31

> dig www.google.com A
…
;; ANSWER SECTION:
www.google.com. 146 IN A 142.250.217.68

;; Query time: 19 msec
;; SERVER: 8.8.8.8#53(8.8.8.8) (UDP)
…

> dig www.google.com AAAA
…
;; ANSWER SECTION:
www.google.com. 34 IN AAAA 2607:f8b0:400a:804::2004

;; Query time: 23 msec
;; SERVER: 8.8.8.8#53(8.8.8.8) (UDP)
…

A few other sections
not important to this

class

CSE333, Summer 2025L18: Networks - Sockets and DNS

DNS Hierarchy

❖ The dots in a web address actually have a meaning!
▪ Each web address component is a different “level” of DNS

▪ Read from right to left

33

mail.google.com

CSE333, Summer 2025L18: Networks - Sockets and DNS

DNS Hierarchy

34

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root
Name Servers

Top-level
Domain Servers

• • • news www• • •

mail.google.com

CSE333, Summer 2025L18: Networks - Sockets and DNS

Resolving DNS Names

❖ The POSIX way is to use getaddrinfo()
▪ A complicated system call found in #include <netdb.h>

▪ Basic idea:

35

int getaddrinfo(const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

▪ Returns 0 on success; returns negative number on failure

CSE333, Summer 2025L18: Networks - Sockets and DNS

Resolving DNS Names

36

int getaddrinfo(const char* hostname,
const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

❖ hostname: String representation for host: DNS name or IP address

❖ hints: a structure with constraints you want respected

❖ res: an output parameter for the list of results

▪ Represented as an struct addrinfo*

▪ Has a next pointer and acts as a linked list in the case of multiple results

❖ service: String representation for port/service. Can be either:

▪ The port number as a string

▪ A “service name” which will be looked up in a special /etc/services file to

get a port

▪ nullptr to allow any port

CSE333, Summer 2025L18: Networks - Sockets and DNS

Resolving DNS Names

37

❖ If getaddrinfo() returns a negative value (error), pass the return value

to gai_strerror() to get a c-string corresponding to the error.

▪ const char *gai_strerror(int errcode);

❖ Free the struct addrinfo list when you’re done using it

with freeaddrinfo()

▪ void freeaddrinfo(struct addrinfo *res);

CSE333, Summer 2025L18: Networks - Sockets and DNS

struct addrinfo

38

struct addrinfo {

};

int ai_flags; // additional flags

❖ The addrinfo struct can be a bit complicated.

▪ No need to memorize it! You can always look it up, we won’t test you on

it, etc.

int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0
int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0
size_t ai_addrlen; // length of socket addr in bytes
struct sockaddr* ai_addr; // pointer to socket addr
char* ai_canonname; // canonical name
struct addrinfo* ai_next; // can form a linked list

CSE333, Summer 2025L18: Networks - Sockets and DNS

getaddrinfo

See:

dnsresolve.cc
https://courses.cs.washington.edu/courses/cse333/25su/lecture/18-network-sockets+dns-example

39

CSE333, Summer 2025L18: Networks - Sockets and DNS

Extra Exercise #1

❖ Write a program that:

▪ Reads DNS names, one per line, from stdin

▪ Translates each name to one or more IP addresses

▪ Prints out each IP address to stdout, one per line

40

