YA UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting

C++ Inheritance Continued and

Casting
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Audrey Seo

Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting

Administrivia

+» Congrats on finishing the midterm!

» Exercise 12 was due this morning
« Exercise 13 isn’t due until Monday (August 4th)
m Take a break or work on HW3

» HW3 due next Thursday (August 7th)

YA UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting

Lecture Outline

¢ C++ Inheritance
= Static Dispatch
= Abstract Methods and Classes
= Constructors and Destructors

= Assignment
« Casting & Conversions
« Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15

CSE333, Summer 2025

w UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

virtual is “sticky”

» IfX::£() isdeclared virtual, then a vtable will be
created for class X and for all of its subclasses

= The vtables will include function pointers for (the correct) £

¢ £ () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

= Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you'll sometimes see both, particularly in older code

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched statically

= At compile time, the compiler writes in a call to the address of the class’
method in the generated code . text segment

- Based on the compile-time visible type of the pointer

4)
class Base {

oid foo () ;

} i
class Derived : public Base {
void foo () ;

b

—P>| Derived: : foo ()
int main(int argc, char** argv) {

Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo () ; I—> Base: :foo()
bp->foo () ;

return 0;

w UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Why Not Always Use virtual?

«» Two (fairly uncommon) reasons:
= Control:

- Non-private methods that you want to be sure aren’t overridden

— Particularly useful for framework design

= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)

- A class with no virtual functions has objects without a vptr field

« InJava, methods are virtual unless specified as final

« In C++, methods are static unless specified as virtual

= Omitting virtual can cause hard to understand bugs

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Why Not Always Use virtual?

«» Two (fairly uncommon) reasons:
= Control:

- Non-private methods that you want to be sure aren’t overridden

— Particularly useful for framework design

gil In practice (at least for this class),
' always use virtual! P

« In C++, methods are static unless specified as virtual

= Omitting virtual can cause hard to understand bugs

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Mixed Dispatch

« Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. obj .Fcn ()), optimized into a
hard-coded function call at compile time (static dispatch)

= |f called via a pointer or reference:
DeclaredT *ptr = new ActualT;
ptr->Fen(); // which version 1is called?

Is F defined i Is Decl dT::F .
sEon () detined in Yes ecrare cr 0 Yes Dynamic dispatch — call
DeclaredT marked virtual in . .
.) most-derived version of £cn ()
(either locally or DeclaredT orin one of A
. .) visible in ActualT
inherited)? its superclasses?
*No * No
CompileE Static dispatch — call

rror DeclaredT: : fcn ()

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Mixed Dispatch Example

mixed.cc (void main (int argc,)
N char** argv) {
A ay;
B b;
{ cout << "al"; }
{ cout << "a2"; } A* a_ptr_a = &a;
A* a ptr b = &b;
Bt r—r——f
class B : public A { B* b ptr b = &b;
public:
void ml1() { cout << "bl"; } a ptr a->ml(); // al
void m2 () { cout << "b2"; } a ptr a->m2(); // a2
& b ptr b->ml(); // bl
b ptr b->m2(); // b2
\. J
a ptr b->ml(); // al
a ptr b->m2(); // b2
\} J

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Mixed Dispatch Example

mixed.cc (void main (int argc,)
, N char** argv) {
class A { A a;
public: B b;
// ml will use static dispatch
void ml() { cout << "al"; } A* a_ptr a = &a;
// m2 will use dynamic dispatch A* a ptr b = &b;
virtual void m2() { cout << "a2"; } B—P—ptr—a——te
}; B* b ptr b = &b;
class B : public A { a ptr a->ml(); // al
public: a ptr a->m2(); // a2
void ml() { cout << "bl, "; }
// m2 is still virtual by default b ptr b->ml(); // bl
void m2 () { cout << "b2"; } b ptr b->m2(); // b2
U |
a ptr b->ml(); // al
a ptr b->m2(); // b2
\} y

10

YA UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting

Lecture Outline

¢ C++ Inheritance
= Static Dispatch
= Abstract Methods & Classes
= Constructors and Destructors

= Assignment
« Casting & Conversions
« Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15

CSE333, Summer 2025

12

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Abstract Methods

+ Sometimes we want to include a method in the interface

of a base class but only implement it in derived classes
= |n Java, we would use an abstract method

= |n C++, we use a “pure virtual” method

- Example:| virtual string noise() = 0O;

-~

13

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Abstract Classes

« A class containing any pure virtual methods is abstract

= You can’t create instances of an abstract class

= Derived classes are also abstract unless they override all pure
virtual methods

« A class containing only pure virtual methods is the same
as a Java interface used to be (pre-Java 8)

= Pure type specification without implementations

14

YA UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting

Lecture Outline

¢ C++ Inheritance
= Static Dispatch
= Abstract Methods and Classes
= Constructors and Destructors

= Assignment
« Casting & Conversions
« Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15

CSE333, Summer 2025

15

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Constructors and Inheritance

<+ A derived class does not inherit the base class’ constructor

= The derived class must have its own constructor

= The base class constructor is automatically invoked before the
constructor of the derived class

rclass Base {] int main(void) {
public: Der d;
Base () { y = 5; 1} }
int y;

} s = First calls Base ()

class Der : public Base { PY Sets y to 5
public:
Der() { z = y + 3; } = Then calls Der ()

int z;

b e Sets zto 8

16

YA UNIVERSITY of WASHINGTON

L15: C++ Inheritance and Casting

Constructors and Inheritance

< If you don’t define a any constructors on the derived class, a default

constructor will be synthesized (like normal)

< A synthesized default constructor for a derived class:

= First invokes the default constructor of the base class

= And then initializes the derived class’ member variables

s oy

class Base {
public:
Base () : y(3) { }
int y;
b g

public:
int z;

b g

class Der : public Base {

This isn’t; compiler error!

class Base {// no default ctor
public:

Base (int y) : y(y) { }

int y;
}i

class Der : public Base {
public:
int z;

1%

CSE333, Summer 2025

17

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting

Constructors and Inheritance

< If your base class doesn’t have a default constructor, you can call a

different one using the initialization list
< You can also use this when it does have a default constructor, but

you want to call a different one.

7

class Base { // no default ctor
public:

Base (int y) : v (y) { }

int y;
I

// This works fine

class Der : public Base {

public:
Der (int y, int z) :|Base(y), |z (z) { }
int z;

I

18

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Destructors and Inheritance

% Destructors work similarly
= Aren’t inherited
= Can be default-synthesized

« But destructors run the base class destructor after instead
of before the derived class destructor

Hint: When in doubt,
destructors always run in

the reverse order that the
constructors ran.

19

YA UNIVERSITY of WASHINGTON

CSE333, Summer 2025

L15: C++ Inheritance and Casting

Destructors and Inheritance

+ Constructors are always run

on a statically-known type

« But destructors can be run
on pointer types through
delete, so dispatch
comes into play

class Base {

public:
Base () { x = new 1int; }
virtual ~Base () { delete x;
int* x;

1%

class Der : public Base {

public:
Der ()
virtual ~Der ()
int* y;

1%

{ vy = new int; }
{ delete y;

void foo () {
Base Db;
Der d;

}

}

}

20

YA UNIVERSITY of WASHINGTON

Static dispatch of
destructors is almost
always a mistake!

= Good habit to always
define a destructor as virtual

= Here, defining a destructor with

an empty body makes sense

L15: C++ Inheritance and Casting

Destructors and Inheritance

baddtor.cc

(class Base {
public:
Base() { x = new int; }
Base () { delete x;
int* x;

1%

class Der : public Base {

public:
Der () { y = new 1int; }
Der () { delete y; }
int* y;
}i
void foo () {

Base* bOptr = new Base;

Base* blptr = new Der;

delete bOptr;
delete blptr;
Der::y
}

// OK
// leaks

\.

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting

Lecture Outline

¢ C++ Inheritance
= Static Dispatch
= Abstract Methods and Classes
= Constructors and Destructors

= Assighment
« Casting & Conversions
« Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15

CSE333, Summer 2025

22

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Assignment

« In C++, if A derives from B:

= We can assign B* pointer objects to A* variables

= We can assign B objects to A variables too!

23

YA UNIVERSITY of WASHINGTON

L15: C++ Inheritance and Casting

Assignment and Inheritance

0
L. %4

When you assign

the value of a derived

class to an instance of

a base class, it’s known as

object slicing

= |t’s legal since b=d passes
type checking rules

= But b doesn’t have space
for any extra fields in d

= So fields like y get “sliced”
off of the object

CSE333, Summer 2025

slicing.cc

(class Base {
public:
Base (1nt x)
int x ;

b

class Der :

public:
Der (int vy)
int y ;

}s

volid foo ()
Base b (1)
Der d(2) ;

{

b = d;

}

public Base {

: Base(16), vy (y) { }

// what happens to y ?
Base b2 (d);

~N

// same behavior

24

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= Fields of the subobject are always next to each other in memory

= No other guarantees about how these are laid out in memory (not
even contiguousness between subobjects)

« Conceptual structure of DividendStock object:

symbol

members inherited | total shares
from Stock | total cost

current price

members defined by

DividendStock | dtViaends_

25

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

STL and Inheritance

« Recall: STL containers store copies of values

= What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

= You get sliced (X

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 1i;

1i.push back (s) ; // OK
1i.push back(ds); // OUCH!

return 0;

26

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

STL and Inheritance

« Instead, store pointers to heap-allocated objects in STL
containers

= Noslicing! &2
= sort () doesthe wrong thing (X

= You have to remember to de 1 et e your objects before destroying
the container (X

- Smart pointers will help with this!

27

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Lecture Outline

« C++ Inheritance
= Static Dispatch
= Abstract Methods and Classes
= Constructors and Destructors

= Assignment
¢ Casting & Conversions
» Introducing: Smart Pointers

Reference: C++ Primer, Chapter 12.1

(2

28

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Explicit Casting in C

@ Simplesyntax:[lhs = (new_type) rhs;

« Used in two ways:

= Convert between pointers of arbitrary types, or between ints
and pointers

- Don’t change the value, just changes the type
= Convert one primitive type to another (like rounding double to int)

 Actually changes the representation

« You can still use C-style casting in C++

= But it’s not as clear what type of casting you’re doing

29

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Casting in C++

« C++ provides an alternative casting style that is more
informative, with four types:

" static cast<to type>(expression)
" dynamic cast<to type>(expression)
= const cast<to type>(expression)

" reinterpret cast<to type>(expression)

« Always use these in C++ code
= |ntent is clearer

= Easier to find in code via searching

30

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting

staticcast.cc

N

static cast class M |
- public:
float x;
¢« statilc cast canconvert: bi
= Pointers or references to classes class Nz public M |
public:
of related type char y;
- Compiler error if classes are not related bi
- Dangerous to cast down a class hierarchy class A
. . s public:
= Conversion between primitives int x;
- e.g. float toint |}
void foo () {

M m; N n;

¢ static castis
checked at compile time // OK

M* bptr = static cast<B*>(&n);

// compiler error

Use static_cast to cast pointers up the A* aptr = static cast<A*>(&m);

class hierarchy, or for numeric casts // compiles, but dangerous
C* cptr = static cast<C*>(&m);

31

YA UNIVERSITY of WASHINGTON

L15: C++ Inheritance and Casting

CSE333, Summer 2025

dynamiccast.cc

class Base {

dynamic cast I
virtual void foo () { }
: float x;
¢« dynamlc cast canconvert: .

= Pointers or references to classes of

related type

*

+ dynamic cast ischecked at both

class Der public Base {

public:

Use static_cast to cast pointers down

compile time and
run time

= Casts between
unrelated classes fail
at compile time

= Casts from base to
derived return nullptr at
run time if the pointed-to
object is not the derived

type

[void bar () {

the class hierarchy, or for casting
references

Rase b; Der d

// OK (run-time check passes)

Base* bptr = dynamic cast<Base*>(&d);
assert (bptr != nullptr);

// OK (run-time check passes)

Der* dptr = dynamic cast<Der*> (bptr)
assert (dptr != nullptr);

// Run-time check fails, returns nullptr

bptr = &b;
dptr = dynamic cast<Der*> (bptr)
assert (dptr != nullptr);

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

const_cast

+ const cast adds or strips const-ness

= Dangerous (!)

[void foo (int* x) {
*x+4;
}

void bar (const int* x) {
foo (%) ; // compiler error
foo (const cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar (&x) ;

return 0;

33

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

const_cast

+ const cast adds or strips const-ness

= Dangerous (!)

«» Can be used (carefully) in certain situations

= Working with older code that doesn’t properly mark read-only
functions with const

= Data structures that change internals sometimes without changing
the conceptual value (like with caching)

34

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

reinterpret cast

+ reinterpret cast casts between incompatible types

= Low-level reinterpretation of the bit pattern

* e.g. storing a pointerinan int64 t, orvice-versa

- Works as long as the integral type is “wide” enough

= Converting between incompatible pointers
- Dangerous (!)

 This is used (carefully) in hw3

35

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Lecture Outline

« C++ Inheritance
= Static Dispatch
= Abstract Methods and Classes
= Constructors and Destructors

= Assignment
+ Casting & Conversions
= Conversions
« Introducing: Smart Pointers

Reference: C++ Primer, Chapter 12.1

*

37

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Implicit Conversion

+» When expected and actual types are not equal, and you
don’t specify an explicit cast, the compiler looks for an
acceptable implicit conversion

7 \
void bar (std::string x);

(
volid foo () {

int x 5.7; // conversion, double -> int
char ¢ = x; // conversion, int -> char
bar ("hi™) ; // conversion, (const char*) -> string

}

\\ J

38

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

User-defined implicit conversions

< If a class has a constructor with a single parameter, the compiler will
use it it to perform implicit conversions

% You can also request it explicitly using static cast

< At most, one user-defined implicit conversion will happen

m Candoint — Foo, butnotint — Foo — Baz

rclass Foo {

public:
Foo (int x) : x(x) { } But char — int — Foois fine!
int x;

s

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // equivalent to return Bar (Foo(5));
} 39

\ 7

w UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Avoiding Accidental Implicit Conversions

«» Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit
conversion path

= Do this as much as possible

4 N

class Foo {

public:
explicit Foo (int x) : x(x) { }
int x;

b g

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error

L} J 40

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Lecture Outline

« C++ Inheritance
= Static Dispatch
= Abstract Methods and Classes
= Constructors and Destructors

= Assignment
« Casting & Conversions
= Conversions
¢ Introducing: Smart Pointers

» Reference: C++ Primer, Chapter 12.1

41

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Copying in the STL

« Last week we learned about STL, and noticed that STL was
doing an enormous amount of copying

+ A solution: store pointers in containers instead of objects

a—
-~

= But this leads to more memory management headaches)-(&

42

w UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Manual Memory Management

« In Cand C++, we've been manually allocating and
deallocating all heap memory

+» To do so correctly, we have to think hard about who
should free/delete an allocated object

= Ownership: what data structure or code is responsible for freeing
data

7
L X4

This responsibility is mostly implicit: it exists in the
programmers head

= Sometimes it will be expressed in comments

= But not understood by the language or compiler

43

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

C++ Smart Pointers

0
L. %4

A smart pointer is an object that stores a pointer to
heap-allocated data and encodes some ideas about
ownership

= A smart pointer looks and behaves like a regular C++ pointer

- By overloading *, —>, [], etc.

= The smart pointer will delete the pointed-to object at the right time
including invoking the object’s destructor

« When that is depends on what kind of smart pointer you use

= With correct use of smart pointers, you no longer have to remember
when to delete heap memory!

44

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

A Toy Smart Pointer

«» We can implement a simple one with:

= A constructor that accepts a pointer
= A destructor that frees the pointer

= Overloaded * and —> operators that access the pointer

45

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON

L15: C++ Inheritance and Casting

ToyPtr Class Template

\.

b

tendif // TOYPTR H_

ToyPtr.h
[#ifndef TOYPTR H)
#define TOYPTR H_
template <typename T> class ToyPtr {
public:
explicit ToyPtr(T *ptr) : ptr (ptr) { } // constructor
~ToyPtr() { delete ptr ; } // destructor
T &operator* () { return *ptr ; } // * operator
T *operator->() { return ptr ; } // => operator
private:
T *ptr ; the pointer

This is weird! The overload for

the -> operator behaves
differently than others

46

YA UNIVERSITY of WASHINGTON

ToyPtr Example

usetoy.cc

(

#include <iostream>
#include "ToyPtr.h"

// simply struct to illustrate the "->" operator

struct Point { int x = 1; int y = 2; };

std: :ostream &operator<<(std::ostream &out, const Point &rhs)
return out << " (" << rhs.x << "," << rhs.y << ") ";

}

int main(int argc, char **argv) {
// Create a dumb polinter
Point *leak = new Point;

// Create a '"smart" pointer
ToyPtr<Point> notleak (new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " “Fnotleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;

{

\

L15: C++ Inheritance and Casting CSE333, Summer 2025

47

YA UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

ToyPtr Example

usetoy.cc

<iostream>]
"TovPtr.h"

==2554== Memcheck, a memory error detector
==2554== Copyright (C) 2002-2024, and GNU GPL'd, by Julian Seward et al.
==2554== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2554== Command: ./usetoy
==2554==

*leak: (1,2)

leak->x: 1
*notleak: (1,2)
notleak->x: 1

==2554==

==2554== HEAP SUMMARY:

==2554== in use at exit: 8 bytes in 1 blocks

==2554== total heap usage: 4 allocs, 3 frees, 74,768 bytes allocated
std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " Fnotleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

\} J

48

YA UNIVERSITY of WASHINGTON

What Makes This a Toy?

Can’t handle:

L15: C++ Inheritance and Casting

CSE333, Summer 2025

= Arrays

Luckily, others have built non-toy smart pointers for us!

Copying
Reassignment

Comparison

... plus many other subtleties...

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Administrivia

¢ Check your HW1 grades

m If you got azero and you turned it in, it’s likely a tagging issue.
File a regrade request!

% Exercise 13 isn’t due until Monday (August 4th)
m Take a break or work on HW3

+» HW3 due next Thursday (August 7th)

50

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Extra Exercise #1

« Design a class hierarchy to represent shapes
= e.g. Circle, Triangle, Square

« Implement methods that:
= Construct shapes
= Move a shape (i.e. add (x,y) to the shape position)
= Returns the centroid of the shape
= Returns the area of the shape

= Print (), which prints out the details of a shape

51

W UNIVERSITY of WASHINGTON L15: C++ Inheritance and Casting CSE333, Summer 2025

Extra Exercise #2

« Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

= Constructs a vector of shapes
= Sorts the vector according to the area of the shape

= Prints out each member of the vector

+ Notes:
= Avoid slicing!

= Make sure the sorting works properly!

52

