
CSE333, Summer 2025L15: C++ Inheritance and Casting

C++ Inheritance Continued and
Casting
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025L15: C++ Inheritance and Casting

Administrivia

❖ Congrats on finishing the midterm!

2

❖ Exercise 12 was due this morning

❖ Exercise 13 isn’t due untilMonday (August 4th)
■ Take a break or work on HW3

❖ HW3 due next Thursday (August 7th)

CSE333, Summer 2025L15: C++ Inheritance and Casting

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15

3

CSE333, Summer 2025L15: C++ Inheritance and Casting

virtual is “sticky”

❖ If X::f() is declared virtual, then a vtable will be

created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) f

4

❖ f() will be called using dynamic dispatch even if

overridden in a derived class without the virtual
keyword

▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use

virtual in derived classes? Recent style guides say just use

override, but you’ll sometimes see both, particularly in older code

CSE333, Summer 2025L15: C++ Inheritance and Casting

What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched statically

5

class Base {
void foo();

};
class Derived : public Base {
void foo();

};

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo();
bp->foo();
return 0;

}

Derived::foo()
...

Base::foo()
...

▪ At compile time, the compiler writes in a call to the address of the class’

method in the generated code .text segment

• Based on the compile-time visible type of the pointer

!

CSE333, Summer 2025L15: C++ Inheritance and Casting

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

6

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

▪ Control:

• Non-private methods that you want to be sure aren’t overridden

❖ In Java, methods are virtual unless specified as final

❖ In C++, methods are static unless specified as virtual
▪ Omitting virtual can cause hard to understand bugs

– Particularly useful for framework design

• A class with no virtual functions has objects without a vptr field

CSE333, Summer 2025L15: C++ Inheritance and Casting

Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

7

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

▪ Control:

• Non-private methods that you want to be sure aren’t overridden

❖ In Java, methods are virtual unless specified as final

❖ In C++, methods are static unless specified as virtual
▪ Omitting virtual can cause hard to understand bugs

– Particularly useful for framework design

• A class with no virtual functions has objects without a vptr field

In practice (at least for this class),
always use virtual!

CSE333, Summer 2025L15: C++ Inheritance and Casting

Mixed Dispatch

❖ Which function is called is a mix of both compile time and

runtime decisions as well as how you call the function

8

▪ If called on an object (e.g. obj.Fcn()), optimized into a

hard-coded function call at compile time (static dispatch)

▪ If called via a pointer or reference:

DeclaredT *ptr = new ActualT;
ptr->Fcn(); // which version is called?

Dynamic dispatch – call
most-derived version of fcn()

visible in ActualT

Yes

Static dispatch – call
DeclaredT::fcn()

Is DeclaredT::Fcn()
marked virtual in

DeclaredT or in one of
its superclasses?

Yes

No

Is Fcn() defined in
DeclaredT
(either locally or

inherited)?

CompileE
rror

No

CSE333, Summer 2025L15: C++ Inheritance and Casting

Mixed Dispatch Example

9

class A {
public:

void m1() { cout << "a1"; }
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1"; }
void m2() { cout << "b2"; }

};

void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); //
a_ptr_a->m2(); //

b_ptr_b->m1(); //
b_ptr_b->m2(); //

a_ptr_b->m1(); //
a_ptr_b->m2(); //

}

mixed.cc

a1
a2

b1
b2

a1
b2

CSE333, Summer 2025L15: C++ Inheritance and Casting

Mixed Dispatch Example

10

class A {
public:
// m1 will use static dispatch

void m1() { cout << "a1"; }
// m2 will use dynamic dispatch
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1, "; }
// m2 is still virtual by default
void m2() { cout << "b2"; }

};

mixed.cc void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); //
a_ptr_a->m2(); //

b_ptr_b->m1(); //
b_ptr_b->m2(); //

a_ptr_b->m1(); //
a_ptr_b->m2(); //

}

a1
a2

b1
b2

a1
b2

CSE333, Summer 2025L15: C++ Inheritance and Casting

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods & Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15

12

CSE333, Summer 2025L15: C++ Inheritance and Casting

Abstract Methods

❖ Sometimes we want to include a method in the interface

of a base class but only implement it in derived classes

13

▪ In C++, we use a “pure virtual” method

• Example: virtual string noise() = 0;virtual string noise() = 0;

▪ In Java, we would use an abstract method

CSE333, Summer 2025L15: C++ Inheritance and Casting

Abstract Classes

❖ A class containing any pure virtual methods is abstract

14

▪ You can’t create instances of an abstract class

▪ Derived classes are also abstract unless they override all pure

virtual methods

❖ A class containing only pure virtual methods is the same

as a Java interface used to be (pre-Java 8)

▪ Pure type specification without implementations

CSE333, Summer 2025L15: C++ Inheritance and Casting

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15

15

CSE333, Summer 2025L15: C++ Inheritance and Casting

Constructors and Inheritance

❖ A derived class does not inherit the base class’ constructor

▪ The derived class must have its own constructor

16

▪ The base class constructor is automatically invoked before the

constructor of the derived class

class Base {
public:
Base() { y = 5; }
int y;

};

class Der : public Base {
public:
Der() { z = y + 3; }
int z;

};

int main(void) {
Der d;

}

▪ First calls Base()
• Sets y to 5

▪ Then calls Der()
• Sets z to 8

CSE333, Summer 2025L15: C++ Inheritance and Casting

Constructors and Inheritance

17

❖ If you don’t define a any constructors on the derived class, a default

constructor will be synthesized (like normal)

class Base {
public:
Base() : y(5) { }
int y;

};

class Der : public Base {
public:
int z;

};

class Base {// no default ctor
public:
Base(int y) : y(y) { }
int y;

};

class Der : public Base {
public:
int z;

};

This is okay This isn’t; compiler error!

❖ A synthesized default constructor for a derived class:

▪ First invokes the default constructor of the base class

▪ And then initializes the derived class’ member variables

CSE333, Summer 2025L15: C++ Inheritance and Casting

Constructors and Inheritance

class Base { // no default ctor
public:
Base(int y) : y(y) { }
int y;

};

// This works fine
class Der : public Base {
public:
Der(int y, int z) : Base(y), z(z) { }
int z;

};

18

❖ If your base class doesn’t have a default constructor, you can call a

different one using the initialization list
❖ You can also use this when it does have a default constructor, but

you want to call a different one.

CSE333, Summer 2025L15: C++ Inheritance and Casting

Destructors and Inheritance

❖ Destructors work similarly
▪ Aren’t inherited

▪ Can be default-synthesized

19

Hint: When in doubt,
destructors always run in
the reverse order that the

constructors ran.

❖ But destructors run the base class destructor after instead

of before the derived class destructor

CSE333, Summer 2025L15: C++ Inheritance and Casting

Destructors and Inheritance

❖ Constructors are always run

on a statically-known type

class Base {
public:
Base() { x = new int; }
virtual ~Base() { delete x; }
int* x;

};

class Der : public Base {
public:
Der() { y = new int; }
virtual ~Der() { delete y; }
int* y;

};

void foo() {
Base b;
Der d;

}

20

❖ But destructors can be run

on pointer types through

delete, so dispatch
comes into play

CSE333, Summer 2025L15: C++ Inheritance and Casting

Destructors and Inheritance

class Base {
public:
Base() { x = new int; }

~Base() { delete x; }
int* x;

};

class Der : public Base {
public:
Der() { y = new int; }

~Der() { delete y; }
int* y;

};

baddtor.cc

21

❖ Static dispatch of

destructors is almost

always a mistake!

▪ Good habit to always

define a destructor as virtual

▪ Here, defining a destructor with

an empty body makes sense

void foo() {
Base* b0ptr = new Base;
Base* b1ptr = new Der;

delete b0ptr; // OK
delete b1ptr; // leaks

Der::y
}

CSE333, Summer 2025L15: C++ Inheritance and Casting

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15

22

CSE333, Summer 2025L15: C++ Inheritance and Casting

Assignment

❖ In C++, if A derives from B:
▪ We can assign B* pointer objects to A* variables

23

▪ We can assign B objects to A variables too!

CSE333, Summer 2025L15: C++ Inheritance and Casting

Assignment and Inheritance

❖ When you assign

the value of a derived

class to an instance of

a base class, it’s known as

object slicing

class Base {
public:
Base(int x) : x_(x) { }
int x_;

};

class Der : public Base {
public:
Der(int y) : Base(16), y_(y) { }
int y_;

};

void foo() {
Base b(1);
Der d(2);

b = d; // what happens to y_?

}

slicing.cc

Base b2(d); // same behavior

24

▪ It’s legal since b=d passes

type checking rules

▪ But b doesn’t have space

for any extra fields in d

▪ So fields like y_ get “sliced”

off of the object

CSE333, Summer 2025L15: C++ Inheritance and Casting

Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to

the data members inherited from each base class

members inherited
from Stock

symbol_
total_shares_
total_cost_
current_price_

members defined by
DividendStock

dividends_

25

▪ Fields of the subobject are always next to each other in memory

▪ No other guarantees about how these are laid out in memory (not

even contiguousness between subobjects)

❖ Conceptual structure of DividendStock object:

CSE333, Summer 2025L15: C++ Inheritance and Casting

STL and Inheritance

❖ Recall: STL containers store copies of values

26

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;

list<Stock> li;

li.push_back(s); // OK

return 0;
}

▪ What happens when we want to store mixes of object types in a

single container? (e.g. Stock and DividendStock)

▪ You get sliced

DividendStock ds;

li.push_back(ds); // OUCH!

CSE333, Summer 2025L15: C++ Inheritance and Casting

STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL

containers

▪ No slicing!

27

▪ sort() does the wrong thing

▪ You have to remember to delete your objects before destroying

the container

• Smart pointers will help with this!

CSE333, Summer 2025L15: C++ Inheritance and Casting

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

❖ Reference: C++ Primer, Chapter 12.1

28

CSE333, Summer 2025L15: C++ Inheritance and Casting

Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;

29

lhs = (new_type) rhs;

❖ Used in two ways:

▪ Convert between pointers of arbitrary types, or between ints
and pointers

• Don’t change the value, just changes the type

▪ Convert one primitive type to another (like rounding double to int)

• Actually changes the representation

❖ You can still use C-style casting in C++

▪ But it’s not as clear what type of casting you’re doing

CSE333, Summer 2025L15: C++ Inheritance and Casting

Casting in C++

❖ C++ provides an alternative casting style that is more

informative, with four types:

30

❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

▪ static_cast<to_type>(expression)
▪ dynamic_cast<to_type>(expression)
▪ const_cast<to_type>(expression)
▪ reinterpret_cast<to_type>(expression)

CSE333, Summer 2025L15: C++ Inheritance and Casting

static_cast

❖ static_cast can convert:

▪ Pointers or references to classes

of related type

31

class M {
public:
float x;

};

class N : public M {
public:
char y;

};

void foo() {
M m; N n;

// OK
M* bptr = static_cast<B*>(&n);

}

staticcast.cc

▪ Conversion between primitives

• e.g. float to int

❖ static_cast is

checked at compile time

Use static_cast to cast pointers up the
class hierarchy, or for numeric casts

• Compiler error if classes are not related
class A {
public:
int x;

};

// compiler error
A* aptr = static_cast<A*>(&m);

• Dangerous to cast down a class hierarchy

// compiles, but dangerous
C* cptr = static_cast<C*>(&m);

CSE333, Summer 2025L15: C++ Inheritance and Casting

dynamic_cast

❖ dynamic_cast can convert:

▪ Pointers or references to classes of

related type

32

void bar() {
Base b; Der d;

// OK (run-time check passes)
Base* bptr = dynamic_cast<Base*>(&d);
assert(bptr != nullptr);

}

dynamiccast.cc
class Base {
public:
virtual void foo() { }
float x;

};

class Der : public Base {
public:
char x;

};❖ dynamic_cast is checked at both

compile time and

run time

Use static_cast to cast pointers down
the class hierarchy, or for casting

references

▪ Casts between

unrelated classes fail

at compile time

▪ Casts from base to

derived return nullptr at

run time if the pointed-to

object is not the derived

type

// OK (run-time check passes)
Der* dptr = dynamic_cast<Der*>(bptr);
assert(dptr != nullptr);

// Run-time check fails, returns nullptr
bptr = &b;
dptr = dynamic_cast<Der*>(bptr);
assert(dptr != nullptr);

CSE333, Summer 2025L15: C++ Inheritance and Casting

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

33

void foo(int* x) {
*x++;

}

void bar(const int* x) {
foo(x); // compiler error
foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar(&x);
return 0;

}

CSE333, Summer 2025L15: C++ Inheritance and Casting

const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

34

❖ Can be used (carefully) in certain situations

▪ Working with older code that doesn’t properly mark read-only

functions with const

▪ Data structures that change internals sometimes without changing

the conceptual value (like with caching)

CSE333, Summer 2025L15: C++ Inheritance and Casting

reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

35

▪ e.g. storing a pointer in an int64_t, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

• This is used (carefully) in hw3

CSE333, Summer 2025L15: C++ Inheritance and Casting

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions
▪ Conversions

❖ Introducing: Smart Pointers

❖ Reference: C++ Primer, Chapter 12.1

37

CSE333, Summer 2025L15: C++ Inheritance and Casting

Implicit Conversion

❖ When expected and actual types are not equal, and you

don’t specify an explicit cast, the compiler looks for an

acceptable implicit conversion

38

void foo() {
int x = 5.7; // conversion, double -> int

}

char c = x; // conversion, int -> char

void bar(std::string x);

bar("hi"); // conversion, (const char*) -> string

CSE333, Summer 2025L15: C++ Inheritance and Casting

User-defined implicit conversions

39

class Foo {
public:
Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // equivalent to return Bar(Foo(5));

}

But char → int → Foo is fine!

❖ If a class has a constructor with a single parameter, the compiler will
use it it to perform implicit conversions

❖ At most, one user-defined implicit conversion will happen

■ Can do int → Foo, but not int → Foo → Baz

❖ You can also request it explicitly using static_cast

CSE333, Summer 2025L15: C++ Inheritance and Casting

Avoiding Accidental Implicit Conversions

❖ Declare one-argument constructors as explicit if you

want to disable them from being used as an implicit

conversion path

▪ Do this as much as possible

40

class Foo {
public:
explicit Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error

}

CSE333, Summer 2025L15: C++ Inheritance and Casting

Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions
▪ Conversions

❖ Introducing: Smart Pointers

❖ Reference: C++ Primer, Chapter 12.1

41

CSE333, Summer 2025L15: C++ Inheritance and Casting

Copying in the STL

❖ Last week we learned about STL, and noticed that STL was

doing an enormous amount of copying

42

❖ A solution: store pointers in containers instead of objects

▪ But this leads to more memory management headaches

CSE333, Summer 2025L15: C++ Inheritance and Casting

Manual Memory Management

❖ In C and C++, we've been manually allocating and

deallocating all heap memory

43

❖ To do so correctly, we have to think hard about who

should free/delete an allocated object
▪ Ownership: what data structure or code is responsible for freeing

data

❖ This responsibility is mostly implicit: it exists in the

programmers head
▪ Sometimes it will be expressed in comments

▪ But not understood by the language or compiler

CSE333, Summer 2025L15: C++ Inheritance and Casting

C++ Smart Pointers

❖ A smart pointer is an object that stores a pointer to

heap-allocated data and encodes some ideas about

ownership

44

▪ A smart pointer looks and behaves like a regular C++ pointer

• By overloading *, ->, [], etc.

▪ With correct use of smart pointers, you no longer have to remember

when to delete heap memory!

▪ The smart pointer will delete the pointed-to object at the right time

including invoking the object’s destructor

• When that is depends on what kind of smart pointer you use

CSE333, Summer 2025L15: C++ Inheritance and Casting

A Toy Smart Pointer

❖ We can implement a simple one with:

45

▪ A constructor that accepts a pointer

▪ A destructor that frees the pointer

▪ Overloaded * and -> operators that access the pointer

CSE333, Summer 2025L15: C++ Inheritance and Casting

ToyPtr Class Template

46

ToyPtr.h

#ifndef TOYPTR_H_
#define TOYPTR_H_

template <typename T> class ToyPtr {
public:
explicit ToyPtr(T *ptr) : ptr_(ptr) { } // constructor

private:
T *ptr_; // the pointer

};

#endif // TOYPTR_H_

~ToyPtr() { delete ptr_; } // destructor
T &operator*() { return *ptr_; } // * operator

T *operator->() { return ptr_; } // -> operator

This is weird! The overload for
the -> operator behaves
differently than others

CSE333, Summer 2025L15: C++ Inheritance and Casting

ToyPtr Example

47

usetoy.cc

#include <iostream>
#include "ToyPtr.h"

// simply struct to illustrate the "->" operator
struct Point { int x = 1; int y = 2; };
std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << "(" << rhs.x << "," << rhs.y << ")";

}

int main(int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer
ToyPtr<Point> notleak(new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " *notleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;
}

CSE333, Summer 2025L15: C++ Inheritance and Casting

ToyPtr Example

48

usetoy.cc

#include <iostream>
#include "ToyPtr.h"

// simply struct to illustrate the "->" operator
typedef struct { int x = 1, y = 2; } Point;
std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << "(" << rhs.x << "," << rhs.y << ")";

}

int main(int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak(new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " *notleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;
}

==2554== Memcheck, a memory error detector
==2554== Copyright (C) 2002-2024, and GNU GPL'd, by Julian Seward et al.
==2554== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2554== Command: ./usetoy
==2554==

*leak: (1,2)
leak->x: 1
*notleak: (1,2)

notleak->x: 1
==2554==
==2554== HEAP SUMMARY:
==2554== in use at exit: 8 bytes in 1 blocks
==2554== total heap usage: 4 allocs, 3 frees, 74,768 bytes allocated

CSE333, Summer 2025L15: C++ Inheritance and Casting

What Makes This a Toy?

❖ Can’t handle:

▪ Arrays

49

▪ Copying

▪ Reassignment

▪ Comparison

▪ … plus many other subtleties…

❖ Luckily, others have built non-toy smart pointers for us!

CSE333, Summer 2025L15: C++ Inheritance and Casting

Administrivia

50

❖ Check your HW1 grades
■ If you got a zero and you turned it in, it’s likely a tagging issue.

File a regrade request!

❖ Exercise 13 isn’t due untilMonday (August 4th)
■ Take a break or work on HW3

❖ HW3 due next Thursday (August 7th)

CSE333, Summer 2025L15: C++ Inheritance and Casting

Extra Exercise #1

❖ Design a class hierarchy to represent shapes

▪ e.g. Circle, Triangle, Square

❖ Implement methods that:

▪ Construct shapes

▪ Move a shape (i.e. add (x,y) to the shape position)

▪ Returns the centroid of the shape

▪ Returns the area of the shape

▪ Print(), which prints out the details of a shape

51

CSE333, Summer 2025L15: C++ Inheritance and Casting

Extra Exercise #2

❖ Implement a program that uses Extra Exercise #1 (shapes

class hierarchy):

▪ Constructs a vector of shapes

▪ Sorts the vector according to the area of the shape

▪ Prints out each member of the vector

❖ Notes:

▪ Avoid slicing!

▪ Make sure the sorting works properly!

52

