
CSE333, Summer 2025L15: C++ Inheritance and Casting

C++ Inheritance Continued and
Casting
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist



CSE333, Summer 2025L15: C++ Inheritance and Casting

Administrivia

❖ Congrats on finishing the midterm!
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❖ Exercise 12 was due this morning

❖ Exercise 13 isn’t due untilMonday (August 4th)
■ Take a break or work on HW3

❖ HW3 due next Thursday (August 7th)
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Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15
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virtual is “sticky”

❖ If X::f() is declared virtual, then a vtable will be

created for class X and for all of its subclasses

▪ The vtables will include function pointers for (the correct) f
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❖ f() will be called using dynamic dispatch even if

overridden in a derived class without the virtual
keyword

▪ Good style to help the reader and avoid bugs by using override

• Style guide controversy, if you use override should you use

virtual in derived classes? Recent style guides say just use

override, but you’ll sometimes see both, particularly in older code
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What happens if we omit “virtual”?

❖ By default, without virtual, methods are dispatched statically
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class Base {
void foo();

};
class Derived : public Base {
void foo();

};

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo();
bp->foo();
return 0;

}

Derived::foo()
...

Base::foo()
...

▪ At compile time, the compiler writes in a call to the address of the class’

method in the generated code .text segment

• Based on the compile-time visible type of the pointer

!
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Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:
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▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

▪ Control:

• Non-private methods that you want to be sure aren’t overridden

❖ In Java, methods are virtual unless specified as final

❖ In C++, methods are static unless specified as virtual
▪ Omitting virtual can cause hard to understand bugs

– Particularly useful for framework design

• A class with no virtual functions has objects without a vptr field
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Why Not Always Use virtual?

❖ Two (fairly uncommon) reasons:

7

▪ Efficiency:

• Non-virtual function calls are a tiny bit faster (no indirect lookup)

▪ Control:

• Non-private methods that you want to be sure aren’t overridden

❖ In Java, methods are virtual unless specified as final

❖ In C++, methods are static unless specified as virtual
▪ Omitting virtual can cause hard to understand bugs

– Particularly useful for framework design

• A class with no virtual functions has objects without a vptr field

In practice (at least for this class),
always use virtual!
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Mixed Dispatch

❖ Which function is called is a mix of both compile time and

runtime decisions as well as how you call the function
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▪ If called on an object (e.g. obj.Fcn()), optimized into a

hard-coded function call at compile time (static dispatch)

▪ If called via a pointer or reference:

DeclaredT *ptr = new ActualT;
ptr->Fcn(); // which version is called?

Dynamic dispatch – call
most-derived version of fcn()

visible in ActualT

Yes

Static dispatch – call
DeclaredT::fcn()

Is DeclaredT::Fcn()
marked virtual in

DeclaredT or in one of
its superclasses?

Yes

No

Is Fcn() defined in
DeclaredT
(either locally or

inherited)?

CompileE
rror

No
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Mixed Dispatch Example

9

class A {
public:

void m1() { cout << "a1"; }
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1"; }
void m2() { cout << "b2"; }

};

void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); //
a_ptr_a->m2(); //

b_ptr_b->m1(); //
b_ptr_b->m2(); //

a_ptr_b->m1(); //
a_ptr_b->m2(); //

}

mixed.cc

a1
a2

b1
b2

a1
b2
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Mixed Dispatch Example

10

class A {
public:
// m1 will use static dispatch

void m1() { cout << "a1"; }
// m2 will use dynamic dispatch
virtual void m2() { cout << "a2"; }

};

class B : public A {
public:
void m1() { cout << "b1, "; }
// m2 is still virtual by default
void m2() { cout << "b2"; }

};

mixed.cc void main(int argc,
char** argv) {

A a;
B b;

A* a_ptr_a = &a;
A* a_ptr_b = &b;
B* b_ptr_a = &a;
B* b_ptr_b = &b;

a_ptr_a->m1(); //
a_ptr_a->m2(); //

b_ptr_b->m1(); //
b_ptr_b->m2(); //

a_ptr_b->m1(); //
a_ptr_b->m2(); //

}

a1
a2

b1
b2

a1
b2
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Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods & Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15
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Abstract Methods

❖ Sometimes we want to include a method in the interface

of a base class but only implement it in derived classes
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▪ In C++, we use a “pure virtual” method

• Example: virtual string noise() = 0;virtual string noise() = 0;

▪ In Java, we would use an abstract method
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Abstract Classes

❖ A class containing any pure virtual methods is abstract
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▪ You can’t create instances of an abstract class

▪ Derived classes are also abstract unless they override all pure

virtual methods

❖ A class containing only pure virtual methods is the same

as a Java interface used to be (pre-Java 8)

▪ Pure type specification without implementations
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Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15
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Constructors and Inheritance

❖ A derived class does not inherit the base class’ constructor

▪ The derived class must have its own constructor
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▪ The base class constructor is automatically invoked before the

constructor of the derived class

class Base {
public:
Base() { y = 5; }
int y;

};

class Der : public Base {
public:
Der() { z = y + 3; }
int z;

};

int main(void) {
Der d;

}

▪ First calls Base()
• Sets y to 5

▪ Then calls Der()
• Sets z to 8
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Constructors and Inheritance
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❖ If you don’t define a any constructors on the derived class, a default

constructor will be synthesized (like normal)

class Base {
public:
Base() : y(5) { }
int y;

};

class Der : public Base {
public:
int z;

};

class Base {// no default ctor
public:
Base(int y) : y(y) { }
int y;

};

class Der : public Base {
public:
int z;

};

This is okay This isn’t; compiler error!

❖ A synthesized default constructor for a derived class:

▪ First invokes the default constructor of the base class

▪ And then initializes the derived class’ member variables
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Constructors and Inheritance

class Base { // no default ctor
public:
Base(int y) : y(y) { }
int y;

};

// This works fine
class Der : public Base {
public:
Der(int y, int z) : Base(y), z(z) { }
int z;

};
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❖ If your base class doesn’t have a default constructor, you can call a

different one using the initialization list
❖ You can also use this when it does have a default constructor, but

you want to call a different one.
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Destructors and Inheritance

❖ Destructors work similarly
▪ Aren’t inherited

▪ Can be default-synthesized

19

Hint: When in doubt,
destructors always run in
the reverse order that the

constructors ran.

❖ But destructors run the base class destructor after instead

of before the derived class destructor



CSE333, Summer 2025L15: C++ Inheritance and Casting

Destructors and Inheritance

❖ Constructors are always run

on a statically-known type

class Base {
public:
Base() { x = new int; }
virtual ~Base() { delete x; }
int* x;

};

class Der : public Base {
public:
Der() { y = new int; }
virtual ~Der() { delete y; }
int* y;

};

void foo() {
Base b;
Der d;

}

20

❖ But destructors can be run

on pointer types through

delete, so dispatch
comes into play
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Destructors and Inheritance

class Base {
public:
Base() { x = new int; }

~Base() { delete x; }
int* x;

};

class Der : public Base {
public:
Der() { y = new int; }

~Der() { delete y; }
int* y;

};

baddtor.cc
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❖ Static dispatch of

destructors is almost

always a mistake!

▪ Good habit to always

define a destructor as virtual

▪ Here, defining a destructor with

an empty body makes sense

void foo() {
Base* b0ptr = new Base;
Base* b1ptr = new Der;

delete b0ptr; // OK
delete b1ptr; // leaks

Der::y
}
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Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

Reference: C++ Primer, Chapter 15
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Assignment

❖ In C++, if A derives from B:
▪ We can assign B* pointer objects to A* variables

23

▪ We can assign B objects to A variables too!
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Assignment and Inheritance

❖ When you assign

the value of a derived

class to an instance of

a base class, it’s known as

object slicing

class Base {
public:
Base(int x) : x_(x) { }
int x_;

};

class Der : public Base {
public:
Der(int y) : Base(16), y_(y) { }
int y_;

};

void foo() {
Base b(1);
Der d(2);

b = d; // what happens to y_?

}

slicing.cc

Base b2(d); // same behavior

24

▪ It’s legal since b=d passes

type checking rules

▪ But b doesn’t have space

for any extra fields in d

▪ So fields like y_ get “sliced”

off of the object
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Derived-Class Objects

❖ A derived object contains “subobjects” corresponding to

the data members inherited from each base class

members inherited
from Stock

symbol_
total_shares_
total_cost_
current_price_

members defined by
DividendStock

dividends_

25

▪ Fields of the subobject are always next to each other in memory

▪ No other guarantees about how these are laid out in memory (not

even contiguousness between subobjects)

❖ Conceptual structure of DividendStock object:
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STL and Inheritance

❖ Recall: STL containers store copies of values

26

#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;

list<Stock> li;

li.push_back(s); // OK

return 0;
}

▪ What happens when we want to store mixes of object types in a

single container? (e.g. Stock and DividendStock)

▪ You get sliced

DividendStock ds;

li.push_back(ds); // OUCH!
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STL and Inheritance

❖ Instead, store pointers to heap-allocated objects in STL

containers

▪ No slicing!

27

▪ sort() does the wrong thing

▪ You have to remember to delete your objects before destroying

the container

• Smart pointers will help with this!
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Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions

❖ Introducing: Smart Pointers

❖ Reference: C++ Primer, Chapter 12.1

28
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Explicit Casting in C

❖ Simple syntax: lhs = (new_type) rhs;
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lhs = (new_type) rhs;

❖ Used in two ways:

▪ Convert between pointers of arbitrary types, or between ints
and pointers

• Don’t change the value, just changes the type

▪ Convert one primitive type to another (like rounding double to int)

• Actually changes the representation

❖ You can still use C-style casting in C++

▪ But it’s not as clear what type of casting you’re doing
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Casting in C++

❖ C++ provides an alternative casting style that is more

informative, with four types:
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❖ Always use these in C++ code

▪ Intent is clearer

▪ Easier to find in code via searching

▪ static_cast<to_type>(expression)
▪ dynamic_cast<to_type>(expression)
▪ const_cast<to_type>(expression)
▪ reinterpret_cast<to_type>(expression)
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static_cast

❖ static_cast can convert:

▪ Pointers or references to classes

of related type

31

class M {
public:
float x;

};

class N : public M {
public:
char y;

};

void foo() {
M m; N n;

// OK
M* bptr = static_cast<B*>(&n);

}

staticcast.cc

▪ Conversion between primitives

• e.g. float to int

❖ static_cast is

checked at compile time

Use static_cast to cast pointers up the
class hierarchy, or for numeric casts

• Compiler error if classes are not related
class A {
public:
int x;

};

// compiler error
A* aptr = static_cast<A*>(&m);

• Dangerous to cast down a class hierarchy

// compiles, but dangerous
C* cptr = static_cast<C*>(&m);
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dynamic_cast

❖ dynamic_cast can convert:

▪ Pointers or references to classes of

related type

32

void bar() {
Base b; Der d;

// OK (run-time check passes)
Base* bptr = dynamic_cast<Base*>(&d);
assert(bptr != nullptr);

}

dynamiccast.cc
class Base {
public:
virtual void foo() { }
float x;

};

class Der : public Base {
public:
char x;

};❖ dynamic_cast is checked at both

compile time and

run time

Use static_cast to cast pointers down
the class hierarchy, or for casting

references

▪ Casts between

unrelated classes fail

at compile time

▪ Casts from base to

derived return nullptr at

run time if the pointed-to

object is not the derived

type

// OK (run-time check passes)
Der* dptr = dynamic_cast<Der*>(bptr);
assert(dptr != nullptr);

// Run-time check fails, returns nullptr
bptr = &b;
dptr = dynamic_cast<Der*>(bptr);
assert(dptr != nullptr);
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const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

33

void foo(int* x) {
*x++;

}

void bar(const int* x) {
foo(x); // compiler error
foo(const_cast<int*>(x)); // succeeds

}

int main(int argc, char** argv) {
int x = 7;
bar(&x);
return 0;

}
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const_cast

❖ const_cast adds or strips const-ness

▪ Dangerous (!)

34

❖ Can be used (carefully) in certain situations

▪ Working with older code that doesn’t properly mark read-only

functions with const

▪ Data structures that change internals sometimes without changing

the conceptual value (like with caching)
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reinterpret_cast

❖ reinterpret_cast casts between incompatible types

▪ Low-level reinterpretation of the bit pattern

35

▪ e.g. storing a pointer in an int64_t, or vice-versa

• Works as long as the integral type is “wide” enough

▪ Converting between incompatible pointers

• Dangerous (!)

• This is used (carefully) in hw3
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Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions
▪ Conversions

❖ Introducing: Smart Pointers

❖ Reference: C++ Primer, Chapter 12.1
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Implicit Conversion

❖ When expected and actual types are not equal, and you

don’t specify an explicit cast, the compiler looks for an

acceptable implicit conversion

38

void foo() {
int x = 5.7; // conversion, double -> int

}

char c = x; // conversion, int -> char

void bar(std::string x);

bar("hi"); // conversion, (const char*) -> string
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User-defined implicit conversions

39

class Foo {
public:
Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // equivalent to return Bar(Foo(5));

}

But char → int → Foo is fine!

❖ If a class has a constructor with a single parameter, the compiler will
use it it to perform implicit conversions

❖ At most, one user-defined implicit conversion will happen

■ Can do int → Foo, but not int → Foo → Baz

❖ You can also request it explicitly using static_cast
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Avoiding Accidental Implicit Conversions

❖ Declare one-argument constructors as explicit if you

want to disable them from being used as an implicit

conversion path

▪ Do this as much as possible

40

class Foo {
public:
explicit Foo(int x) : x(x) { }
int x;

};

int Bar(Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error

}
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Lecture Outline

❖ C++ Inheritance

▪ Static Dispatch

▪ Abstract Methods and Classes

▪ Constructors and Destructors

▪ Assignment

❖ Casting & Conversions
▪ Conversions

❖ Introducing: Smart Pointers

❖ Reference: C++ Primer, Chapter 12.1
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Copying in the STL

❖ Last week we learned about STL, and noticed that STL was

doing an enormous amount of copying

42

❖ A solution: store pointers in containers instead of objects

▪ But this leads to more memory management headaches
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Manual Memory Management

❖ In C and C++, we've been manually allocating and

deallocating all heap memory

43

❖ To do so correctly, we have to think hard about who

should free/delete an allocated object
▪ Ownership: what data structure or code is responsible for freeing

data

❖ This responsibility is mostly implicit: it exists in the

programmers head
▪ Sometimes it will be expressed in comments

▪ But not understood by the language or compiler
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C++ Smart Pointers

❖ A smart pointer is an object that stores a pointer to

heap-allocated data and encodes some ideas about

ownership

44

▪ A smart pointer looks and behaves like a regular C++ pointer

• By overloading *, ->, [], etc.

▪ With correct use of smart pointers, you no longer have to remember

when to delete heap memory!

▪ The smart pointer will delete the pointed-to object at the right time

including invoking the object’s destructor

• When that is depends on what kind of smart pointer you use
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A Toy Smart Pointer

❖ We can implement a simple one with:

45

▪ A constructor that accepts a pointer

▪ A destructor that frees the pointer

▪ Overloaded * and -> operators that access the pointer
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ToyPtr Class Template

46

ToyPtr.h

#ifndef TOYPTR_H_
#define TOYPTR_H_

template <typename T> class ToyPtr {
public:
explicit ToyPtr(T *ptr) : ptr_(ptr) { } // constructor

private:
T *ptr_; // the pointer

};

#endif // TOYPTR_H_

~ToyPtr() { delete ptr_; } // destructor
T &operator*() { return *ptr_; } // * operator

T *operator->() { return ptr_; } // -> operator

This is weird! The overload for
the -> operator behaves
differently than others
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ToyPtr Example

47

usetoy.cc

#include <iostream>
#include "ToyPtr.h"

// simply struct to illustrate the "->" operator
struct Point { int x = 1; int y = 2; };
std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << "(" << rhs.x << "," << rhs.y << ")";

}

int main(int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer
ToyPtr<Point> notleak(new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " *notleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;
}
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ToyPtr Example

48

usetoy.cc

#include <iostream>
#include "ToyPtr.h"

// simply struct to illustrate the "->" operator
typedef struct { int x = 1, y = 2; } Point;
std::ostream &operator<<(std::ostream &out, const Point &rhs) {
return out << "(" << rhs.x << "," << rhs.y << ")";

}

int main(int argc, char **argv) {
// Create a dumb pointer
Point *leak = new Point;

// Create a "smart" pointer (OK, it's still pretty dumb)
ToyPtr<Point> notleak(new Point);

std::cout << " *leak: " << *leak << std::endl;
std::cout << " leak->x: " << leak->x << std::endl;
std::cout << " *notleak: " << *notleak << std::endl;
std::cout << "notleak->x: " << notleak->x << std::endl;

return 0;
}

==2554== Memcheck, a memory error detector
==2554== Copyright (C) 2002-2024, and GNU GPL'd, by Julian Seward et al.
==2554== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2554== Command: ./usetoy
==2554==

*leak: (1,2)
leak->x: 1
*notleak: (1,2)

notleak->x: 1
==2554==
==2554== HEAP SUMMARY:
==2554== in use at exit: 8 bytes in 1 blocks
==2554== total heap usage: 4 allocs, 3 frees, 74,768 bytes allocated
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What Makes This a Toy?

❖ Can’t handle:

▪ Arrays

49

▪ Copying

▪ Reassignment

▪ Comparison

▪ … plus many other subtleties…

❖ Luckily, others have built non-toy smart pointers for us!
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Administrivia

50

❖ Check your HW1 grades
■ If you got a zero and you turned it in, it’s likely a tagging issue.

File a regrade request!

❖ Exercise 13 isn’t due untilMonday (August 4th)
■ Take a break or work on HW3

❖ HW3 due next Thursday (August 7th)
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Extra Exercise #1

❖ Design a class hierarchy to represent shapes

▪ e.g. Circle, Triangle, Square

❖ Implement methods that:

▪ Construct shapes

▪ Move a shape (i.e. add (x,y) to the shape position)

▪ Returns the centroid of the shape

▪ Returns the area of the shape

▪ Print(), which prints out the details of a shape

51
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Extra Exercise #2

❖ Implement a program that uses Extra Exercise #1 (shapes

class hierarchy):

▪ Constructs a vector of shapes

▪ Sorts the vector according to the area of the shape

▪ Prints out each member of the vector

❖ Notes:

▪ Avoid slicing!

▪ Make sure the sorting works properly!
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