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Administrivia
« ex11 (STL Vector) due Saturday (tomorrow) night, 11 pm

" Unusual deadline because of hw2 yesterday and midterm

Monday

+» New ex12 (STL map) out today, due Wed. 10 am (usual
time)

+ HWS3 writeup on web now. Starter code will be pushed
this weekend & demo in class today

=  Get started immediately after Monday’s midterm — don’t wait



W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Administrivia

+ Midterm Monday, in-class
= Everything up through core C++ but not templates/STL,
inheritance

= Can bring one hand-written notecard for reference during the
exam (blank cards available after class)

= Review session Sun. 1pm, MGH 241. ~1 hour or a bit longer if
needed. Bring your questions!
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Lecture Outline

¢ More STL Containers
& C++ Inheritance

Reference: More info in C++ Primer §9.2, 11.2
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STL Containers =& (review)

« A container is an object that stores (in memory) a
collection of other objects (elements)

= |[mplemented as class templates, so hugely flexible

<« Several different classes of container

= Seguence containers (vector, deque, 1ist, ...)

= Associative containers (set, map, multiset, multimap,
bitset, ...)

= Differ in algorithmic cost and supported operations
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STL iterator (review)

+ Each container class has an associated iterator class (e.qg.
vector<int>::iterator)used to iterate through
elements of the container

» http://www.cplusplus.com/reference/std/iterator/

= |terator range is from .begin () up to.end ()

°* end is one past the last container element!
= Some container iterators support more operations than others
- All can be incremented (++), copied, copy-constructed
- Some can be dereferenced on RHS (e.g. x = *it;)
- Some can be dereferenced on LHS (e.g. *it = x;)
- Some can be decremented (--)

- Some support more ([ ], +, —, +=, —=, <, > operators)
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STL Algorithms (review)

« A set of functions to be used on ranges of elements

= Range: any sequence that can be accessed through iterators or
pointers, like arrays or some of the containers

» General form: |algorithm (begin, end, ...);

« Algorithms operate directly on range elements rather than
the containers they live in

= Make use of elements’ copy constructor, =, ==, 1=, <

= Some do not modify

- e.g. find, count, for_each, min_element, binary_search

= Some do modify

- e.g. sort, transform, copy, swap
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More STL Containers

See:

https://courses.cs.washington.edu/courses/cse333/25su/lecture 14-c++-STL-cont+inheritance —exampl

e/
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Unordered Containers (C++11)

¢ unordered map, unordered set

= And related classes unordered multimap,
unordered multiset

= Average case for key access is O(1)

- But range iterators can be less efficient than ordered map/set

= See C++ Primer, online references for details
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Lecture Outline

< More STL Containers
¢ C++ Inheritance

= Review of basic idea
= Dynamic Dispatch

= vtables and vptr

+» Reference: C++ Primer, Chapter 15

11
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Overview of Next Two Inheritance Lectures

& C++ inheritance

= Review of basic idea (pretty much the same as in Java)
= What’s different in C++ (compared to Java)

- Static vs dynamic dispatch - virtual functions and vtables (i.e., dynamic
dispatch) are optional

- Pure virtual functions, abstract classes, why no Java “interfaces”

- Assignment slicing, using class hierarchies with STL

12
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Overview of Next Two Inheritance Lectures

«» C++inheritance
= Review of basic idea (pretty much the same as in Java)

= What’s different in C++ (compared to Java)

mmmm) - Static vs dynamic dispatch - virtual functions and vtables (i.e., dynamic
dispatch) are optional

13
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Lecture Outline

< More STL Containers
¢ C++ Inheritance

= Review of basic idea
= Dynamic Dispatch

= vtables and vptr

+» Reference: C++ Primer, Chapter 15

14
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Stock Portfolio Example

« A portfolio that represents a person’s financial investments

= Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

- The difference between the cost and market value is the profit (or loss)

= Different assets compute market value in different ways

- A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

- A dividend stock is a stock that also has dividend payments

« Cash is an asset that never incurs a profit or loss

15



YA UNIVERSITY of WASHINGTON

L14: C++ STL Continued, Inheritance

Design Without Inheritance

% One class per asset type:

7
%®

symbol
total shares
total cost
current price

GetMarketValue ()
GetProfit ()
GetCost ()

= Redundant!

= Cannot treat multiple investments together

DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

CSE333, Summer 2025

amount

GetMarketValue ()

- e.g. can’t have an array or vector of different assets

See sample codein initial design/



YA UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance

Inheritance

« A parent-child “is-a” relationship between classes
= A child (derived class) extends a parent (base class)

+ Benefits:
= Code reuse

 Children can automatically inherit code from parents

= Polymorphism

- Ability to redefine existing behavior but preserve the interface
« Children can override the behavior of the parent

 Others can make calls on objects without knowing which part of the
inheritance treeitis in

= Extensibility

« Children can add behavior

CSE333, Summer 2025
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Terminology
Java C++
Superclass Base Class
Subclass Derived Class

« Mean the same things. You’ll hear both.

18
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Desigh With Inheritance

GetMarketValue ()
GetProfit ()
GetCost ()
symbol =
total shares amount
total cost =
current price GetMarketValue ()
GetMarketValue () DividendStock
GetProfit() Symbol
GetCost () total shares
total cost
current price
dividends_
GetMarketValue ()
GetProfit ()
GetCost ()

19
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Like Java: Access Modifiers

+ public: visible to all other classes
+ protected: visibleto current class and its derived classes

+ private: visible only to the current class

Use protected for class members only when

7
¢

= Class is designed to be extended by subclasses
= Subclasses must have access but clients should not be allowed

= (recall that C++ style guide says all data members should be
private; your getters/setters must, minimally, be protected)

20
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Class derivation List

«» Comma-separated list of classes to inherit from

#include "BaseClass.h"

class Name : public BaseClass {

L )

= Focus on single inheritance, but multiple inheritance possible

class Name : public BaseClass, public OtherBaseClass {

21
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Class derivation List

«» Comma-separated list of classes to inherit from

#include "BaseClass.h"

class Name : |public |BaseClass {

L )

+» Almost always you will want public inheritance

= Acts like extends does in Java

= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

- Except that constructors, destructors, copy constructor, and
assignment operator are never inherited (in spite of sloppy description
in some books that say otherwise)

22
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Back to Stocks

symbol _
total shares
total cost_

current price

GetMarketValue ()
GetProfit ()
GetCost ()

BASE

L14: C++ STL Continued, Inheritance

DividendStock

symbol
total shares
total cost
current price
dividends_

GetMarketValue ()
GetProfit ()
GetCost ()

DERIVED

CSE333, Summer 2025

23
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Back to Stocks

Stock
symbol dividends
- symbol —
total shares total shares
total cost total cost
3 current price
current price_ ]| ~GetProfit()
e arke alue -
GetMarketValue () GetProfit () )’ | - —GetCost()
GetProfit () GetCost () <& PayDividend ()
GetCost ()

« A derived class:
= |nherits the behavior and state (specification) of the base class
m some of the base class’” member functions (opt.)

= Extends the base class with new member functions, variables
(opt.)

24
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Lecture Outline

< More STL Containers
¢ C++ Inheritance

= Review of basic idea
= Dynamic Dispatch

= vtables and vptr

+» Reference: C++ Primer, Chapter 15

25
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Like Java: Dynamic Dispatch

Usually, when a derived function is available for an object,
we want the derived function to be invoked

= This requires a run time decision of what code to invoke

= This is similar to Java

A member function invoked on an object should be the
most-derived function accessible to the object’s visible

type

= Can determine what to invoke from the object itself

26
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Like Java: Dynamic Dispatch

« A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type

= Can determine what to invoke from the object itself

«» Example: PrintStock(Stock *s) { s->Print() }

= Calls Print() function appropriate to Stock, DividendStock, etc.
without knowing the exact class of *s, other than it is some sort of
Stock

= So the Stock (DividendStock, etc.) object itself has to carry some
sort of information that can be used to decide which Print() to call

= (see inherit-design/useasssets.cc)

27



CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance

Requesting Dynamic Dispatch

+ Prefix the member function declaration with the
virtual keyword

= Derived functions don’t need to repeat virtual, since it's virtual
in all subclasses, but was traditionally good style to do so

= This is how method calls work in Java (no virtual keyword needed)
= You almost always want functions to be virtual

» override keyword (C++11)

= Tells compiler this method should be overriding an inherited
virtual function — a/lways use if available

= Prevents overloading vs. overriding bugs

28
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Requesting Dynamic Dispatch

« virtual keyword
» override keyword (C++11)

« Both of these are technically optional in derived classes

= A virtual function is virtual in all subclasses as well

= A function with the same signature as a virtual function in the
superclass always overrides

= Be consistent and follow local conventions

29
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Dynamic Dispatch Example

/Elass Stock { A
virtual double GetMarketValue () const;
virtual double GetProfit () const;
} Stock.h
\_ J
4 )

class DividendStock, public Stock {

override double GetMarketValue () const;

DividendStock.h
J

30
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Dynamic Dispatch Example

+ When a member function is invoked on an object:

= The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

rdouble Stock: :GetMarketValue () const {
return get shares() * get share price();

}

double Stock: :GetProfit () const {

return GetMarketValue () - GetCost();
} Stock.cc

rdouble DividendStock: :GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

double DividendStock: :GetProfit() const { // inherited
return GetMarketValue () - GetCost () ;
} // really Stock::GetProfit () .
. DividendStock.cc

31
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Dynamic Dispatch Example

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend() ;

DividendStock* ds = &dividend;

Stock* s = &dividend;

// Invokes DividendStock::GetMarketValue ()
ds—->GetMarketValue () ;

// Invokes DividendStock::GetMarketValue ()
s—>GetMarketValue () ;

32
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Dynamic Dispatch Example

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend() ;

DividendStock* ds = &dividend;

Stock* s = &dividend;

// 1invokes Stock::GetProfit(), since that method 1is inherited.
// Stock::GetProfit () invokes DividendStock::GetMarketValue (),
// since that 1s the most-derived accessible function.

s—->GetProfit () ;
N

Ny

double Stock: :GetProfit () const {
return this->GetMarketValue () - this->GetCost () ;
} \\\\\
LN
double DividendStock: :GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

\

33
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Most-Derived

-
class A {
public:
// Foo will use dynamic dispatch
virtual void Foo () ;

b g

class B : public A {

public:

[ // B::Foo overrides A::Foo ]
virtual void Foo () ;

b g

class C : public B {
// C inherits B::Foo/()
}:

L14: C++ STL Continued, Inheritance

CSE333, Summer 2025

\

void Bar () {

}

A* a ptr;
C ¢c;

a ptr = &c;

// Whose Foo () is
a ptr->Foo();

called?

34
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How Can This Possibly Work?

«» The compiler produces Stock.o from just Stock.cc

* |t doesn’t know that DividendStock exists during this process

= So then how does the emitted code know to call

Stock: :GetMarketValue () or
DividendStock: :GetMarketValue ()

or something else that might not exist yet?

)
Function pointers

CSE333, Summer 2025

36
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Lecture Outline

< More STL Containers
¢ C++ Inheritance

= Review of basic idea
= Dynamic Dispatch

= vtables and vptr

+» Reference: C++ Primer, Chapter 15

37
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vtables and the vptr

« If a class contains any virtual methods, the compiler emits:

= A (single) virtual function table (vtable) for the class

- Contains a function pointer for each virtual method in the class

- The pointers in the vtable point to the most-derived function for that
class

= Avirtual table pointer (vptr) in each object instance

- A pointer to a virtual table as a “hidden” member variable

- When the object’s constructor is invoked, the vptr is initialized to point
to the vtable for the newly constructed object’s class

- Thus, the vptr “remembers” what class the object is

38
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vtable/vptr Example

L14: C++ STL Continued, Inheritance

(class Base {
public:
virtual void £1();
virtual void £2 () ;

b g

class Derl : public Base {
public:

virtual void £1();
Y

class Der2 : public Base {
public:

virtual void £2 () ;
Y

\.

CSE333, Summer 2025

39
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vtable/vptr Example

-
Base b;
Derl di;
Derz d2;

object class compiled
instances vtables code

Base: :f1()
push %rbp Base* bptr = &d1;

vptr

bptr->£1 () ;
Base::£2()
push S%rbp

dl

vptr

Derl::£f1()
push S%rbp

Der2::£2()
push %rbp

d2

vptr

@) Inherited
[:] Overridden 40
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vtable/vptr Example

(" A
object class compiled Base b;
instances vtables code Derl dl;
Derz d2;
Base: :f1()
push %rbp Base* bptr = &dl;
/—bptr—>f1 () g
_Basef?fZTT———— // bptr->vptr
push %rbp // ->f1 ()
dl vptr ﬂll
Derl::£f1()
push $rbp
Der2::£2()
push %rbp
\ y,

@) Inherited
[:] Overridden 41
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vtable/vptr Example

4 N\
object class compiled Beise 195
instances vtables code Derl di;
Derz d2;
Base: :f1()
b vptr push %rbp Base* bptr = &dl1;
bptr—>£1 () ;
Base: :£f2() // bptr->vptr
push %$rbp // —>f1()
dl 'Qétr bptr = &d2;
Derl:gfiéé bptr->£1() ;
Pusi srbp // bptr->vptr
// ->r1()
c. . Der2::£f2
42 “ ()
vptr push %rbp
@) Inherited N o
() overridden

42



YA UNIVERSITY of WASHINGTON

L14: C++ STL Continued, Inheritance

CSE333, Summer 2025

vtable/vptr Example

( \
object class compiled Base b;
instances vtables code Derl di;
Der2 d2;
Base: :f1l()

push %rbp Base* bptr = &d1;

bptr->£1 () ;

Base: :£f2() // bptr->vptr
push %$rbp // —>f1()
bptr = &d2;
Derl:gfi() |t optr->£1() ;
___EBE——“Lb?——— // bptr->vptr
o // —>11()
v 4 Der2::£2()
dz vptr (@] push %rbp
@) Inherited N o
() overridden

43
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Don’t forget!

+ Midterm Monday, in-class
+ Ex 11 due on Saturday
« Ex 12 due on Monday

+ HW3 write-up released, repos pushed soon

44
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Extra Exercise #1

+ Take one of the books from HW2's test tree and:
= Read in the book, split it into words (you can use your hw2)

= For each word, insert the word into an STL map

- The key is the word, the value is an integer

- The value should keep track of how many times you’ve seen the word,
so each time you encounter the word, increment its map element

 Thus, build a histogram of word count

= Print out the histogram in order, sorted by word count

= Bonus: Plot the histogram on a log-log scale (use Excel, gnuplot,
etc.)

- x-axis: log(word number), y-axis: log(word count)

45



