YA UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance

C++ STL Continued, Inheritance
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Audrey Seo

Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance

Administrivia
« ex11 (STL Vector) due Saturday (tomorrow) night, 11 pm

" Unusual deadline because of hw2 yesterday and midterm

Monday

+» New ex12 (STL map) out today, due Wed. 10 am (usual
time)

+ HWS3 writeup on web now. Starter code will be pushed
this weekend & demo in class today

= Get started immediately after Monday’s midterm — don’t wait

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Administrivia

+ Midterm Monday, in-class
= Everything up through core C++ but not templates/STL,
inheritance

= Can bring one hand-written notecard for reference during the
exam (blank cards available after class)

= Review session Sun. 1pm, MGH 241. ~1 hour or a bit longer if
needed. Bring your questions!

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Lecture Outline

¢ More STL Containers
& C++ Inheritance

Reference: More info in C++ Primer §9.2, 11.2

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

STL Containers =& (review)

« A container is an object that stores (in memory) a
collection of other objects (elements)

= |[mplemented as class templates, so hugely flexible

<« Several different classes of container

= Seguence containers (vector, deque, 1ist, ...)

= Associative containers (set, map, multiset, multimap,
bitset, ...)

= Differ in algorithmic cost and supported operations

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

STL iterator (review)

+ Each container class has an associated iterator class (e.qg.
vector<int>::iterator)used to iterate through
elements of the container

» http://www.cplusplus.com/reference/std/iterator/

= |terator range is from .begin () up to.end ()

°* end is one past the last container element!
= Some container iterators support more operations than others
- All can be incremented (++), copied, copy-constructed
- Some can be dereferenced on RHS (e.g. x = *it;)
- Some can be dereferenced on LHS (e.g. *it = x;)
- Some can be decremented (--)

- Some support more ([], +, —, +=, —=, <, > operators)

w UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

STL Algorithms (review)

« A set of functions to be used on ranges of elements

= Range: any sequence that can be accessed through iterators or
pointers, like arrays or some of the containers

» General form: |algorithm (begin, end, ...);

« Algorithms operate directly on range elements rather than
the containers they live in

= Make use of elements’ copy constructor, =, ==, 1=, <

= Some do not modify

- e.g. find, count, for_each, min_element, binary_search

= Some do modify

- e.g. sort, transform, copy, swap

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

More STL Containers

See:

https://courses.cs.washington.edu/courses/cse333/25su/lecture 14-c++-STL-cont+inheritance —exampl

e/

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Unordered Containers (C++11)

¢ unordered map, unordered set

= And related classes unordered multimap,
unordered multiset

= Average case for key access is O(1)

- But range iterators can be less efficient than ordered map/set

= See C++ Primer, online references for details

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Lecture Outline

< More STL Containers
¢ C++ Inheritance

= Review of basic idea
= Dynamic Dispatch

= vtables and vptr

+» Reference: C++ Primer, Chapter 15

11

YA UNIVERSITY of WASHINGTON

L14: C++ STL Continued, Inheritance

CSE333, Summer 2025

Overview of Next Two Inheritance Lectures

& C++ inheritance

= Review of basic idea (pretty much the same as in Java)
= What’s different in C++ (compared to Java)

- Static vs dynamic dispatch - virtual functions and vtables (i.e., dynamic
dispatch) are optional

- Pure virtual functions, abstract classes, why no Java “interfaces”

- Assignment slicing, using class hierarchies with STL

12

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Overview of Next Two Inheritance Lectures

«» C++inheritance
= Review of basic idea (pretty much the same as in Java)

= What’s different in C++ (compared to Java)

mmmm) - Static vs dynamic dispatch - virtual functions and vtables (i.e., dynamic
dispatch) are optional

13

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Lecture Outline

< More STL Containers
¢ C++ Inheritance

= Review of basic idea
= Dynamic Dispatch

= vtables and vptr

+» Reference: C++ Primer, Chapter 15

14

w UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Stock Portfolio Example

« A portfolio that represents a person’s financial investments

= Each asset has a cost (i.e. how much was paid for it) and a market
value (i.e. how much it is worth)

- The difference between the cost and market value is the profit (or loss)

= Different assets compute market value in different ways

- A stock that you own has a ticker symbol (e.g. “GOOG”), a number of
shares, share price paid, and current share price

- A dividend stock is a stock that also has dividend payments

« Cash is an asset that never incurs a profit or loss

15

YA UNIVERSITY of WASHINGTON

L14: C++ STL Continued, Inheritance

Design Without Inheritance

% One class per asset type:

7
%®

symbol
total shares
total cost
current price

GetMarketValue ()
GetProfit ()
GetCost ()

= Redundant!

= Cannot treat multiple investments together

DividendStock

symbol
total shares
total cost
current price
dividends

GetMarketValue ()
GetProfit ()
GetCost ()

CSE333, Summer 2025

amount

GetMarketValue ()

- e.g. can’t have an array or vector of different assets

See sample codein initial design/

YA UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance

Inheritance

« A parent-child “is-a” relationship between classes
= A child (derived class) extends a parent (base class)

+ Benefits:
= Code reuse

 Children can automatically inherit code from parents

= Polymorphism

- Ability to redefine existing behavior but preserve the interface
« Children can override the behavior of the parent

 Others can make calls on objects without knowing which part of the
inheritance treeitis in

= Extensibility

« Children can add behavior

CSE333, Summer 2025

17

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Terminology
Java C++
Superclass Base Class
Subclass Derived Class

« Mean the same things. You’ll hear both.

18

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Desigh With Inheritance

GetMarketValue ()
GetProfit ()
GetCost ()
symbol =
total shares amount
total cost =
current price GetMarketValue ()
GetMarketValue () DividendStock
GetProfit() Symbol
GetCost () total shares
total cost
current price
dividends_
GetMarketValue ()
GetProfit ()
GetCost ()

19

w UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Like Java: Access Modifiers

+ public: visible to all other classes
+ protected: visibleto current class and its derived classes

+ private: visible only to the current class

Use protected for class members only when

7
¢

= Class is designed to be extended by subclasses
= Subclasses must have access but clients should not be allowed

= (recall that C++ style guide says all data members should be
private; your getters/setters must, minimally, be protected)

20

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Class derivation List

«» Comma-separated list of classes to inherit from

#include "BaseClass.h"

class Name : public BaseClass {

L)

= Focus on single inheritance, but multiple inheritance possible

class Name : public BaseClass, public OtherBaseClass {

21

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Class derivation List

«» Comma-separated list of classes to inherit from

#include "BaseClass.h"

class Name : |public |BaseClass {

L)

+» Almost always you will want public inheritance

= Acts like extends does in Java

= Any member that is non-private in the base class is the same in
the derived class; both interface and implementation inheritance

- Except that constructors, destructors, copy constructor, and
assignment operator are never inherited (in spite of sloppy description
in some books that say otherwise)

22

YA UNIVERSITY of WASHINGTON

Back to Stocks

symbol _
total shares
total cost_

current price

GetMarketValue ()
GetProfit ()
GetCost ()

BASE

L14: C++ STL Continued, Inheritance

DividendStock

symbol
total shares
total cost
current price
dividends_

GetMarketValue ()
GetProfit ()
GetCost ()

DERIVED

CSE333, Summer 2025

23

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Back to Stocks

Stock
symbol dividends
- symbol —
total shares total shares
total cost total cost
3 current price
current price_]| ~GetProfit()
e arke alue -
GetMarketValue () GetProfit ())’ | - —GetCost()
GetProfit () GetCost () <& PayDividend ()
GetCost ()

« A derived class:
= |nherits the behavior and state (specification) of the base class
m some of the base class’” member functions (opt.)

= Extends the base class with new member functions, variables
(opt.)

24

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Lecture Outline

< More STL Containers
¢ C++ Inheritance

= Review of basic idea
= Dynamic Dispatch

= vtables and vptr

+» Reference: C++ Primer, Chapter 15

25

w UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Like Java: Dynamic Dispatch

Usually, when a derived function is available for an object,
we want the derived function to be invoked

= This requires a run time decision of what code to invoke

= This is similar to Java

A member function invoked on an object should be the
most-derived function accessible to the object’s visible

type

= Can determine what to invoke from the object itself

26

w UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Like Java: Dynamic Dispatch

« A member function invoked on an object should be the
most-derived function accessible to the object’s visible
type

= Can determine what to invoke from the object itself

«» Example: PrintStock(Stock *s) { s->Print() }

= Calls Print() function appropriate to Stock, DividendStock, etc.
without knowing the exact class of *s, other than it is some sort of
Stock

= So the Stock (DividendStock, etc.) object itself has to carry some
sort of information that can be used to decide which Print() to call

= (see inherit-design/useasssets.cc)

27

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance

Requesting Dynamic Dispatch

+ Prefix the member function declaration with the
virtual keyword

= Derived functions don’t need to repeat virtual, since it's virtual
in all subclasses, but was traditionally good style to do so

= This is how method calls work in Java (no virtual keyword needed)
= You almost always want functions to be virtual

» override keyword (C++11)

= Tells compiler this method should be overriding an inherited
virtual function — a/lways use if available

= Prevents overloading vs. overriding bugs

28

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Requesting Dynamic Dispatch

« virtual keyword
» override keyword (C++11)

« Both of these are technically optional in derived classes

= A virtual function is virtual in all subclasses as well

= A function with the same signature as a virtual function in the
superclass always overrides

= Be consistent and follow local conventions

29

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Dynamic Dispatch Example

/Elass Stock { A
virtual double GetMarketValue () const;
virtual double GetProfit () const;
} Stock.h
_ J
4)

class DividendStock, public Stock {

override double GetMarketValue () const;

DividendStock.h
J

30

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance

Dynamic Dispatch Example

+ When a member function is invoked on an object:

= The most-derived function accessible to the object’s visible type is
invoked (decided at run time based on actual type of the object)

rdouble Stock: :GetMarketValue () const {
return get shares() * get share price();

}

double Stock: :GetProfit () const {

return GetMarketValue () - GetCost();
} Stock.cc

rdouble DividendStock: :GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

double DividendStock: :GetProfit() const { // inherited
return GetMarketValue () - GetCost () ;
} // really Stock::GetProfit () .
. DividendStock.cc

31

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Dynamic Dispatch Example

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend() ;

DividendStock* ds = ÷nd;

Stock* s = ÷nd;

// Invokes DividendStock::GetMarketValue ()
ds—->GetMarketValue () ;

// Invokes DividendStock::GetMarketValue ()
s—>GetMarketValue () ;

32

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Dynamic Dispatch Example

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend() ;

DividendStock* ds = ÷nd;

Stock* s = ÷nd;

// 1invokes Stock::GetProfit(), since that method 1is inherited.
// Stock::GetProfit () invokes DividendStock::GetMarketValue (),
// since that 1s the most-derived accessible function.

s—->GetProfit () ;
N

Ny

double Stock: :GetProfit () const {
return this->GetMarketValue () - this->GetCost () ;
} \\\\\
LN
double DividendStock: :GetMarketValue () const {
return get shares() * get share price() + dividends ;

}

\

33

YA UNIVERSITY of WASHINGTON

Most-Derived

-
class A {
public:
// Foo will use dynamic dispatch
virtual void Foo () ;

b g

class B : public A {

public:

[// B::Foo overrides A::Foo]
virtual void Foo () ;

b g

class C : public B {
// C inherits B::Foo/()
}:

L14: C++ STL Continued, Inheritance

CSE333, Summer 2025

\

void Bar () {

}

A* a ptr;
C ¢c;

a ptr = &c;

// Whose Foo () is
a ptr->Foo();

called?

34

YA UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance

How Can This Possibly Work?

«» The compiler produces Stock.o from just Stock.cc

* |t doesn’t know that DividendStock exists during this process

= So then how does the emitted code know to call

Stock: :GetMarketValue () or
DividendStock: :GetMarketValue ()

or something else that might not exist yet?

)
Function pointers

CSE333, Summer 2025

36

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Lecture Outline

< More STL Containers
¢ C++ Inheritance

= Review of basic idea
= Dynamic Dispatch

= vtables and vptr

+» Reference: C++ Primer, Chapter 15

37

w UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

vtables and the vptr

« If a class contains any virtual methods, the compiler emits:

= A (single) virtual function table (vtable) for the class

- Contains a function pointer for each virtual method in the class

- The pointers in the vtable point to the most-derived function for that
class

= Avirtual table pointer (vptr) in each object instance

- A pointer to a virtual table as a “hidden” member variable

- When the object’s constructor is invoked, the vptr is initialized to point
to the vtable for the newly constructed object’s class

- Thus, the vptr “remembers” what class the object is

38

YA UNIVERSITY of WASHINGTON

vtable/vptr Example

L14: C++ STL Continued, Inheritance

(class Base {
public:
virtual void £1();
virtual void £2 () ;

b g

class Derl : public Base {
public:

virtual void £1();
Y

class Der2 : public Base {
public:

virtual void £2 () ;
Y

\.

CSE333, Summer 2025

39

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

vtable/vptr Example

-
Base b;
Derl di;
Derz d2;

object class compiled
instances vtables code

Base: :f1()
push %rbp Base* bptr = &d1;

vptr

bptr->£1 () ;
Base::£2()
push S%rbp

dl

vptr

Derl::£f1()
push S%rbp

Der2::£2()
push %rbp

d2

vptr

@) Inherited
[:] Overridden 40

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

vtable/vptr Example

(" A
object class compiled Base b;
instances vtables code Derl dl;
Derz d2;
Base: :f1()
push %rbp Base* bptr = &dl;
/—bptr—>f1 () g
_Basef?fZTT———— // bptr->vptr
push %rbp // ->f1 ()
dl vptr ﬂll
Derl::£f1()
push $rbp
Der2::£2()
push %rbp
\ y,

@) Inherited
[:] Overridden 41

YA UNIVERSITY of WASHINGTON

L14: C++ STL Continued, Inheritance CSE333, Summer 2025

vtable/vptr Example

4 N\
object class compiled Beise 195
instances vtables code Derl di;
Derz d2;
Base: :f1()
b vptr push %rbp Base* bptr = &dl1;
bptr—>£1 () ;
Base: :£f2() // bptr->vptr
push %$rbp // —>f1()
dl 'Qétr bptr = &d2;
Derl:gfiéé bptr->£1() ;
Pusi srbp // bptr->vptr
// ->r1()
c. . Der2::£f2
42 “ ()
vptr push %rbp
@) Inherited N o
() overridden

42

YA UNIVERSITY of WASHINGTON

L14: C++ STL Continued, Inheritance

CSE333, Summer 2025

vtable/vptr Example

(\
object class compiled Base b;
instances vtables code Derl di;
Der2 d2;
Base: :f1l()

push %rbp Base* bptr = &d1;

bptr->£1 () ;

Base: :£f2() // bptr->vptr
push %$rbp // —>f1()
bptr = &d2;
Derl:gfi() |t optr->£1() ;
___EBE——“Lb?——— // bptr->vptr
o // —>11()
v 4 Der2::£2()
dz vptr (@] push %rbp
@) Inherited N o
() overridden

43

W UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Don’t forget!

+ Midterm Monday, in-class
+ Ex 11 due on Saturday
« Ex 12 due on Monday

+ HW3 write-up released, repos pushed soon

44

w UNIVERSITY of WASHINGTON L14: C++ STL Continued, Inheritance CSE333, Summer 2025

Extra Exercise #1

+ Take one of the books from HW2's test tree and:
= Read in the book, split it into words (you can use your hw2)

= For each word, insert the word into an STL map

- The key is the word, the value is an integer

- The value should keep track of how many times you’ve seen the word,
so each time you encounter the word, increment its map element

 Thus, build a histogram of word count

= Print out the histogram in order, sorted by word count

= Bonus: Plot the histogram on a log-log scale (use Excel, gnuplot,
etc.)

- x-axis: log(word number), y-axis: log(word count)

45

