
CSE333, Summer 2025L14: C++ STL Continued, Inheritance

C++ STL Continued, Inheritance
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Administrivia
❖ ex11 (STL Vector) due Saturday (tomorrow) night, 11 pm

▪ Unusual deadline because of hw2 yesterday and midterm

Monday

2

❖ New ex12 (STL map) out today, due Wed. 10 am (usual

time)

❖ HW3 writeup on web now. Starter code will be pushed

this weekend & demo in class today

▪ Get started immediately after Monday’s midterm – don’t wait

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Administrivia

3

❖ Midterm Monday, in-class

▪ Everything up through core C++ but not templates/STL,

inheritance

▪ Can bring one hand-written notecard for reference during the

exam (blank cards available after class)

▪ Review session Sun. 1pm, MGH 241. ~1 hour or a bit longer if

needed. Bring your questions!

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Lecture Outline

❖ More STL Containers

❖ C++ Inheritance

4

Reference: More info in C++ Primer §9.2, 11.2

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

STL Containers (review)

❖ A container is an object that stores (in memory) a

collection of other objects (elements)

5

▪ Implemented as class templates, so hugely flexible

❖ Several different classes of container

▪ Sequence containers (vector, deque, list, ...)

▪ Associative containers (set, map, multiset, multimap,
bitset, ...)

▪ Differ in algorithmic cost and supported operations

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

STL iterator (review)

❖ Each container class has an associated iterator class (e.g.

vector<int>::iterator) used to iterate through
elements of the container

▪ http://www.cplusplus.com/reference/std/iterator/

6

▪ Iterator range is from .begin() up to .end()

• end is one past the last container element!

▪ Some container iterators support more operations than others

• All can be incremented (++), copied, copy-constructed

• Some can be dereferenced on RHS (e.g. x = *it;)

• Some can be dereferenced on LHS (e.g. *it = x;)

• Some can be decremented (--)

• Some support more ([], +, -, +=, -=, <, > operators)

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

STL Algorithms (review)

❖ A set of functions to be used on ranges of elements

▪ Range: any sequence that can be accessed through iterators or

pointers, like arrays or some of the containers

▪ General form:

7

algorithm(begin, end, ...);

❖ Algorithms operate directly on range elements rather than

the containers they live in

▪ Make use of elements’ copy constructor, =, ==, !=, <

▪ Some do not modify

• e.g. find, count, for_each, min_element, binary_search

▪ Some do modify

• e.g. sort, transform, copy, swap

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

More STL Containers

See:
https://courses.cs.washington.edu/courses/cse333/25su/lecture/ 14-c++-STL-cont+inheritance -exampl

e/

8

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Unordered Containers (C++11)

❖ unordered_map, unordered_set
▪ And related classes unordered_multimap,
unordered_multiset

9

▪ Average case for key access is O(1)

• But range iterators can be less efficient than ordered map/set

▪ See C++ Primer, online references for details

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Lecture Outline

❖ More STL Containers

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch

▪ vtables and vptr

❖ Reference: C++ Primer, Chapter 15

11

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Overview of Next Two Inheritance Lectures

❖ C++ inheritance

▪ Review of basic idea (pretty much the same as in Java)

▪ What’s different in C++ (compared to Java)

• Static vs dynamic dispatch - virtual functions and vtables (i.e., dynamic

dispatch) are optional

• Pure virtual functions, abstract classes, why no Java “interfaces”

• Assignment slicing, using class hierarchies with STL

12

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Overview of Next Two Inheritance Lectures

❖ C++ inheritance

▪ Review of basic idea (pretty much the same as in Java)

▪ What’s different in C++ (compared to Java)

• Static vs dynamic dispatch - virtual functions and vtables (i.e., dynamic

dispatch) are optional

• Pure virtual functions, abstract classes, why no Java “interfaces”

• Assignment slicing, using class hierarchies with STL

13

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Lecture Outline

❖ More STL Containers

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch

▪ vtables and vptr

❖ Reference: C++ Primer, Chapter 15

14

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Stock Portfolio Example

❖ A portfolio that represents a person’s financial investments

15

▪ Each asset has a cost (i.e. how much was paid for it) and a market

value (i.e. how much it is worth)

• The difference between the cost and market value is the profit (or loss)

▪ Different assets compute market value in different ways

• A stock that you own has a ticker symbol (e.g. “GOOG”), a number of

shares, share price paid, and current share price

• A dividend stock is a stock that also has dividend payments

• Cash is an asset that never incurs a profit or loss

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Design Without Inheritance

❖ One class per asset type:

16

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

▪ Redundant!

▪ Cannot treat multiple investments together

• e.g. can’t have an array or vector of different assets

❖ See sample code in initial_design/

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Inheritance

❖ A parent-child “is-a” relationship between classes

▪ A child (derived class) extends a parent (base class)

17

❖ Benefits:

▪ Code reuse

• Children can automatically inherit code from parents

▪ Polymorphism

• Ability to redefine existing behavior but preserve the interface

• Children can override the behavior of the parent

• Others can make calls on objects without knowing which part of the

inheritance tree it is in

▪ Extensibility

• Children can add behavior

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Terminology

❖ Mean the same things. You’ll hear both.

18

Java C++

Superclass Base Class

Subclass Derived Class

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Design With Inheritance

19

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

Cash

amount_

GetMarketValue()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

Asset (abstract)

GetMarketValue()
GetProfit()
GetCost()

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Like Java: Access Modifiers

❖ public: visible to all other classes

❖ protected: visible to current class and its derived classes

❖ private: visible only to the current class

20

❖ Use protected for class members only when

▪ Class is designed to be extended by subclasses

▪ Subclasses must have access but clients should not be allowed

▪ (recall that C++ style guide says all data members should be

private; your getters/setters must, minimally, be protected)

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Class derivation List

❖ Comma-separated list of classes to inherit from

21

#include "BaseClass.h"

class Name : public BaseClass {
...

};

▪ Focus on single inheritance, butmultiple inheritance possible

class Name : public BaseClass, public OtherBaseClass {

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Class derivation List

22

❖ Almost always you will want public inheritance

▪ Acts like extends does in Java

❖ Comma-separated list of classes to inherit from

#include "BaseClass.h"

class Name : public BaseClass {
...

};

▪ Any member that is non-private in the base class is the same in

the derived class; both interface and implementation inheritance

• Except that constructors, destructors, copy constructor, and

assignment operator are never inherited (in spite of sloppy description

in some books that say otherwise)

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Back to Stocks

23

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

symbol_
total_shares_
total_cost_

current_price_
dividends_

GetMarketValue()
GetProfit()
GetCost()

BASE DERIVED

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Back to Stocks

❖ A derived class:

▪ Inherits the behavior and state (specification) of the base class

▪ Overrides some of the base class’ member functions (opt.)

▪ Extends the base class with new member functions, variables

(opt.)

24

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

DividendStock

dividends_

GetMarketValue()
GetProfit()
GetCost()

PayDividend()

Stock

symbol_
total_shares_
total_cost_

current_price_

GetMarketValue()
GetProfit()
GetCost()

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Lecture Outline

❖ More STL Containers

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch

▪ vtables and vptr

❖ Reference: C++ Primer, Chapter 15

25

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Like Java: Dynamic Dispatch

❖ Usually, when a derived function is available for an object,

we want the derived function to be invoked

26

▪ This requires a run time decision of what code to invoke

▪ This is similar to Java

❖ A member function invoked on an object should be the

most-derived function accessible to the object’s visible

type

▪ Can determine what to invoke from the object itself

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Like Java: Dynamic Dispatch

27

❖ A member function invoked on an object should be the

most-derived function accessible to the object’s visible

type

▪ Can determine what to invoke from the object itself

❖ Example: PrintStock(Stock *s) { s->Print() }

▪ Calls Print() function appropriate to Stock, DividendStock, etc.

without knowing the exact class of *s, other than it is some sort of

Stock

▪ So the Stock (DividendStock, etc.) object itself has to carry some

sort of information that can be used to decide which Print() to call

▪ (see inherit-design/useasssets.cc)

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Requesting Dynamic Dispatch

❖ Prefix the member function declaration with the

virtual keyword

28

▪ Derived functions don’t need to repeat virtual, since it's virtual
in all subclasses, but was traditionally good style to do so

▪ This is how method calls work in Java (no virtual keyword needed)

▪ You almost always want functions to be virtual

❖ override keyword (C++11)

▪ Tells compiler this method should be overriding an inherited

virtual function – always use if available

▪ Prevents overloading vs. overriding bugs

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Requesting Dynamic Dispatch

❖ virtual keyword

❖ override keyword (C++11)

❖ Both of these are technically optional in derived classes

29

▪ A virtual function is virtual in all subclasses as well

▪ A function with the same signature as a virtual function in the

superclass always overrides

▪ Be consistent and follow local conventions

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Dynamic Dispatch Example

30

class Stock {
...

virtual double GetMarketValue() const;
virtual double GetProfit() const;

...
} Stock.h

class DividendStock, public Stock {
...

override double GetMarketValue() const;
...
}

DividendStock.h

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Dynamic Dispatch Example

❖ When a member function is invoked on an object:

▪ Themost-derived function accessible to the object’s visible type is

invoked (decided at run time based on actual type of the object)

31

double Stock::GetMarketValue() const {
return get_shares() * get_share_price();

}

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

}

double DividendStock::GetMarketValue() const {
return get_shares() * get_share_price() + dividends_;

}

DividendStock.cc

Stock.cc

double DividendStock::GetProfit() const { // inherited
return GetMarketValue() – GetCost();

} // really Stock::GetProfit()

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Dynamic Dispatch Example

32

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd;
// Invokes DividendStock::GetMarketValue()
ds->GetMarketValue();

// Invokes DividendStock::GetMarketValue()
s->GetMarketValue();

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Dynamic Dispatch Example

33

#include "Stock.h"
#include "DividendStock.h"

DividendStock dividend();
DividendStock* ds = ÷nd;
Stock* s = ÷nd;
// invokes Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit() invokes DividendStock::GetMarketValue(),
// since that is the most-derived accessible function.

s->GetProfit();

double Stock::GetProfit() const {
return GetMarketValue() – GetCost();

}

double DividendStock::GetMarketValue() const {
return get_shares() * get_share_price() + dividends_;

}

double Stock::GetProfit() const {
return this->GetMarketValue() – this->GetCost();

}

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Most-Derived

34

class A {
public:
// Foo will use dynamic dispatch
virtual void Foo();

};

class B : public A {
public:
// B::Foo overrides A::Foo
virtual void Foo();

};

class C : public B {
// C inherits B::Foo()

};

void Bar() {
A* a_ptr;
C c;

a_ptr = &c;

// Whose Foo() is called?
a_ptr->Foo();

}

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

How Can This Possibly Work?

❖ The compiler produces Stock.o from just Stock.cc

36

▪ It doesn’t know that DividendStock exists during this process

▪ So then how does the emitted code know to call

Stock::GetMarketValue() or

DividendStock::GetMarketValue()

or something else that might not exist yet?

Function pointers

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Lecture Outline

❖ More STL Containers

❖ C++ Inheritance

▪ Review of basic idea

▪ Dynamic Dispatch

▪ vtables and vptr

❖ Reference: C++ Primer, Chapter 15

37

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

vtables and the vptr

❖ If a class contains any virtual methods, the compiler emits:

38

▪ A (single) virtual function table (vtable) for the class

• Contains a function pointer for each virtual method in the class

• The pointers in the vtable point to the most-derived function for that

class

▪ A virtual table pointer (vptr) in each object instance

• A pointer to a virtual table as a “hidden” member variable

• When the object’s constructor is invoked, the vptr is initialized to point

to the vtable for the newly constructed object’s class

• Thus, the vptr “remembers” what class the object is

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

vtable/vptr Example

39

class Base {
public:
virtual void f1();
virtual void f2();

};

class Der1 : public Base {
public:
virtual void f1();

};

class Der2 : public Base {
public:
virtual void f2();

};

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

f1
f2

Der1

vtable/vptr Example

40

Base b;
Der1 d1;
Der2 d2;

class
vtables

Base

compiled
code

Base::f1()
push %rbp
...

Base::f2()
push %rbp
...

Der1::f1()
push %rbp
...

Der2::f2()
push %rbp
...

bptr->f1();

Base* bptr = &d1;f1
f2

f1
f2

Der2

object
instances

...
b

...
d1

...
d2

vptr

vptr

vptr

Inherited

Overridden

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

f1
f2

Der1

vtable/vptr Example

41

Base b;
Der1 d1;
Der2 d2;

class
vtables

compiled
code

Base::f1()
push %rbp
...

Base::f2()
push %rbp
...

Der1::f1()
push %rbp
...

Der2::f2()
push %rbp
...

object
instances

bptr->f1();
// bptr->vptr
// ->f1()

Base* bptr = &d1;

...
d1 vptr

f1
f2

Der1

Inherited

Overridden

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

f1
f2

Der1

vtable/vptr Example

42

Base b;
Der1 d1;
Der2 d2;

class
vtables

Base

compiled
code

Base::f1()
push %rbp
...

Base::f2()
push %rbp
...

Der1::f1()
push %rbp
...

Der2::f2()
push %rbp
...

bptr->f1();
// bptr->vptr
// ->f1()

Base* bptr = &d1;f1
f2

f1
f2

Der2

object
instances

...
b

...
d1

...
d2

vptr

vptr

vptr

bptr = &d2;

bptr->f1();
// bptr->vptr
// ->f1()

Inherited

Overridden

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

vtable/vptr Example

43

Base b;
Der1 d1;
Der2 d2;

class
vtables

compiled
code

Base::f1()
push %rbp
...

Base::f2()
push %rbp
...

Der1::f1()
push %rbp
...

Der2::f2()
push %rbp
...

bptr->f1();
// bptr->vptr
// ->f1()

Base* bptr = &d1;

f1
f2

Der2

vptr

bptr = &d2;

bptr->f1();
// bptr->vptr
// ->f1()

object
instances

...
d2

Inherited

Overridden

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Don’t forget!

44

❖ Midterm Monday, in-class

❖ Ex 11 due on Saturday

❖ Ex 12 due on Monday

❖ HW3 write-up released, repos pushed soon

CSE333, Summer 2025L14: C++ STL Continued, Inheritance

Extra Exercise #1

❖ Take one of the books from HW2’s test_tree and:

▪ Read in the book, split it into words (you can use your hw2)

▪ For each word, insert the word into an STL map

• The key is the word, the value is an integer

• The value should keep track of how many times you’ve seen the word,

so each time you encounter the word, increment its map element

• Thus, build a histogram of word count

▪ Print out the histogram in order, sorted by word count

▪ Bonus: Plot the histogram on a log-log scale (use Excel, gnuplot,

etc.)

• x-axis: log(word number), y-axis: log(word count)

45

