
CSE333, Summer 2025L13: C++ Class Details and Heap

C++ Class Details, Heap
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist



CSE333, Summer 2025L13: C++ Class Details and Heap

Administrivia

❖ Exercise 9 due this morning, Exercise 10 due on

Wednesday

2

❖ Unfortunately, Exercise 11 needs to be due before the

midterm…

❖ Homework 2 due Thursday



CSE333, Summer 2025L13: C++ Class Details and Heap

Administrivia

❖ Midterm exam in a week:

Monday 7/22, 1:10 - 2:10 in SMI 211

4

▪ See last Wednesdays slides for details

❖ Midterm review in section this week



CSE333, Summer 2025L13: C++ Class Details and Heap

Lecture Outline

❖ Class Details
▪ Namespaces

▪ Access Controls and Friend Functions

▪ Rule of Three / Making Copies

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class Walkthrough

6



CSE333, Summer 2025L13: C++ Class Details and Heap

❖ Namespace definition:

▪ namespace name {
// declarations go here

}

Namespaces

❖ Each namespace is a separate scope

▪ Useful for avoiding symbol collisions

7

namespace name {
// declarations go here

}

▪ Creates a new namespace name if it did not exist, otherwise adds

to the existing namespace (!)

• This means that components (classes, functions, etc.) of a namespace

can be defined in multiple source files

– All of the standard library is in namespace std but it has many source files



CSE333, Summer 2025L13: C++ Class Details and Heap

Classes vs. Namespaces

❖ They seems somewhat similar, but classes are not

namespaces:

▪ There are no instances/objects of a namespace; a namespace is

just a group of logically-related things (classes, functions, etc.)

8

▪ To access a member of a namespace, you must use the fully

qualified name (i.e. nsp_name::member)
• Unless you are using that namespace or individual member item

▪ You only used the fully qualified name of a class member when you are

defining it outside of the scope of the class definition

• Otherwise, you’re just using dot notation (<object>.<member>)



CSE333, Summer 2025L13: C++ Class Details and Heap

Lecture Outline

❖ Class Details
▪ Namespaces

▪ Access Controls and Friend Functions
• (Aside) Structs in C++

▪ Rule of Three / Making Copies

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class Walkthrough

9



CSE333, Summer 2025L13: C++ Class Details and Heap

Access Control

❖ Access modifiers for members:

▪ public: accessible to all parts of the program
▪ private: accessible to the member functions of the class

10

▪ protected: accessible to member functions of the class and any

derived classes (subclasses – more to come, later)

❖ Reminders:

▪ Access modifiers apply to allmembers that follow until another

access modifier is reached

• Private to class, not object instances



CSE333, Summer 2025L13: C++ Class Details and Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that

happen to use some class

▪ Called like a regular function instead of as a member of a class

object instance

▪ These do not have access to the class’ private members

11

❖ Useful nonmember functions often included as part of the

interface to a class

▪ Declaration goes in header file, but outside of class definition

▪ Declaration goes inside the same namespace as the class, if it has one



CSE333, Summer 2025L13: C++ Class Details and Heap

Nonmember Functions

❖ “Nonmember functions” are just normal functions that

happen to use some class

▪ Called like a regular function instead of as a member of a class

object instance

▪ These do not have access to the class’ private members

▪ Often included as part of the interface to a class

12

class Complex { ... };

void ReadFromStream(std::istream& in, Complex& a);

void ReadFromStream(std::istream& in, Complex& a) {
double r;
in >> r
a.set_real(r);

// … etc …
}



CSE333, Summer 2025L13: C++ Class Details and Heap

Operator Overloading

❖ Can overload operators usingmember functions

▪ Restriction: left-hand side argument must be a class you are

implementing

13

Complex& Complex::operator+=(const Complex &a) { ... }

Complex operator+(const Complex &a, const Complex &b) { ... }

❖ Can overload operators using nonmember functions

▪ No restriction on arguments (can specify any two)

• Our only option when the left-hand side is a class you do not have

control over, like ostream or istream.

▪ But no access to private data members



CSE333, Summer 2025L13: C++ Class Details and Heap

friend Nonmember Functions

❖ A class can give a nonmember function (or class) access to

its non-publicmembers by declaring it as a friend
within its definition

▪ friend function is not a class member, but has access privileges

as if it were

14

class Complex {
...
friend std::istream& operator>>(std::istream& in, Complex& a);
...

}; // class Complex

std::istream& operator>>(std::istream& in, Complex& a) {
...

}

Complex.h

Complex.cc



CSE333, Summer 2025L13: C++ Class Details and Heap

When to use Nonmember and friend

❖ Member functions:

15

▪ Operators that modify the object being called on

• e.g. Assignment operator (operator=)

▪ “Core” non-operator functionality that is part of the class

interface

❖ Nonmember functions:
▪ Used for commutative operators

• e.g., so v1 + v2 is invoked as operator+(v1, v2)instead of
v1.operator+(v2)

▪ If operating on two types and the class is on the right-hand side

• e.g., cin >> complex;

▪ Returning a “new” object, not modifying an existing one

▪ Only grant friend permission if you NEED to



CSE333, Summer 2025L13: C++ Class Details and Heap

Lecture Outline

❖ Class Details
▪ Namespaces

▪ Access Controls and Friend Functions
• (Aside) Structs in C++

▪ Rule of Three / Making Copies

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class Walkthrough

17



CSE333, Summer 2025L13: C++ Class Details and Heap

struct vs. class

❖ In C, a struct can only contain data fields

18

❖ In C++, struct and class are (nearly) the same!

▪ Both define a new type (the struct or class name)

▪ Both can have methods and member visibility

(public/private/protected)

▪ Only real difference: members are default public in a struct and

default private in a class

▪ Has no methods and all fields are always accessible

▪ In struct foo, the foo is a “struct tag”, not an ordinary data

type



CSE333, Summer 2025L13: C++ Class Details and Heap

struct vs. class

❖ Common style/usage convention:

▪ Use struct for simple bundles of data

• Convenience constructors can make sense though

▪ Use class for abstractions with data + functions

19



CSE333, Summer 2025L13: C++ Class Details and Heap

Lecture Outline

❖ Class Details
▪ Namespaces

▪ Access Controls and Friend Functions

▪ Rule of Three / Making Copies

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class Walkthrough

20



CSE333, Summer 2025L13: C++ Class Details and Heap

Rule of Three

❖ If you define any of:

1) Destructor

2) Copy Constructor

3) Assignment (operator=)

❖ Then you should normally define all three

21

class Point {
public:
...
~Point() = default; // the default dtor
Point(const Point& copyme) = default; // the default cctor
Point& operator=(const Point& rhs) = default; // the default "="
...

▪ Can explicitly ask for default synthesized versions (C++11 & later):

This usually means your
objects manage some
resource (like a pointer

into the heap)



CSE333, Summer 2025L13: C++ Class Details and Heap

Dealing with the insanity

❖ C++ style guide tip:

▪ If you don’t intend to copy the object, disable the copy constructor and
assignment operator – avoids implicit invocation and excessive copying.

22

▪ C++11 and later have direct syntax to indicate this:

class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { } // ctor
...
Point(const Point& copyme) = delete; // declare cctor and "=" to
Point& operator=(const Point& rhs) = delete; // be deleted (C++11)
private:
...

}; // class Point

Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point_2011.h



CSE333, Summer 2025L13: C++ Class Details and Heap

If you’re dealing with old code…

❖ In pre-C++11 code the copy constructor and assignment

were often disabled by making them private and not

implementing them (you may see this)…

23

class Point {
public:
Point(const int x, const int y) : x_(x), y_(y) { } // ctor
...
private:
Point(const Point& copyme); // disable cctor (no def.)
Point& operator=(const Point& rhs); // disable "=" (no def.)
...

}; // class Point

Point x(1, 2); // OK!
Point y = w; // compiler error (no copy constructor)
y = x; // compiler error (no assignment operator)

Point_pre_2011.h



CSE333, Summer 2025L13: C++ Class Details and Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friend Functions

▪ Namespaces

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class Walkthrough

24



CSE333, Summer 2025L13: C++ Class Details and Heap

new/delete

❖ To allocate on the heap using C++, you use the new
keyword instead of malloc() from stdlib.h

25

▪ You can use new to allocate a primitive type (e.g. new int)

▪ You can use new to allocate an object (e.g. new Point)

• Will execute appropriate constructor as part of object allocate/create

❖ To deallocate a heap-allocated object or primitive, use the

delete keyword instead of free() from stdlib.h

▪ Don’t mix and match!

• Never free() something allocated with new

• Never delete something allocated with malloc()

• Careful if you’re using a legacy C code library or module in C++



CSE333, Summer 2025L13: C++ Class Details and Heap

new/delete Example

#include "Point.h"
using namespace std;

... // definitions of AllocateInt() and AllocatePoint()

int main() {
Point* x = AllocatePoint(1, 2);
int* y = AllocateInt(3);

cout << "x's x_ coord: " << x->get_x() << endl;
cout << "y: " << y << ", *y: " << *y << endl;

int* AllocateInt(int x) {
int* heapy_int = new int;
*heapy_int = x;
return heapy_int;

}

Point* AllocatePoint(int x, int y) {
Point* heapy_pt = new Point(x,y);
return heapy_pt;

}

heappoint.cc

26

delete x;
delete y;
return 0;

}

...



CSE333, Summer 2025L13: C++ Class Details and Heap

27

g++ -Wall -g -std=c++17 -o heappoint \
heappoint.cc Point.cc

valgrind ./heappoint

==3167334== Memcheck, a memory error detector
==3167334== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==3167334== Using Valgrind-3.22.0 and LibVEX; rerun with -h for copyright info
==3167334== Command: ./heappoint
==3167334==
Calling Point constructor
x's x_ coordinate: 1
distance between x and self: 0
y: 0x4daa110, *y: 3
==3167334==
==3167334== HEAP SUMMARY:
==3167334== in use at exit: 0 bytes in 0 blocks
==3167334== total heap usage: 4 allocs, 4 frees, 73,740 bytes allocated
==3167334==
==3167334== All heap blocks were freed -- no leaks are possible
==3167334==
==3167334== For lists of detected and suppressed errors, rerun with: -s
==3167334== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

new/delete Example



CSE333, Summer 2025L13: C++ Class Details and Heap

new/delete Behavior

❖ new behavior:

▪ When allocating you can specify a constructor or initial value

• e.g., new Point(1, 2), new int(333)

▪ If no initialization specified, it will use default constructor for

objects and uninitialized (“mystery”) data for primitives

28

▪ You don’t need to check if new returns NULL

• When an error is encountered, an exception is thrown (that we won’t

worry about)

❖ delete behavior:

▪ If you delete already deleted memory, then you will get

undefined behavior (same as when you double free in C)



CSE333, Summer 2025L13: C++ Class Details and Heap

❖ To dynamically deallocate an array:

▪ Use delete[] name;

Dynamically Allocated Arrays

❖ To dynamically allocate an array:

▪ Default initialize: type* name = new type[size];

delete[] name;

29

▪ It is an incorrect to use “delete name;” on an array

• The compiler probably won’t catch this, though (!) because it can’t

always tell if name* was allocated with new type[size];
or new type;
– Especially inside a function where a pointer parameter could point to a

single item or an array and there’s no way to tell which!

• Result of wrong delete is undefined behavior



CSE333, Summer 2025L13: C++ Class Details and Heap

Heap Example (primitive)

#include "Point.h"
using namespace std;

int main() {
int stack_int;
int* heap_int = new int;
int* heap_init_int = new int(12);

}

delete heap_arr;
delete[] heap_init_arr;

delete heap_int;
delete heap_init_int;

30

arrays.cc

// ok
// ok
// error – must be delete[]
// ok

int stack_arr[10];
int* heap_arr = new int[10];

int* heap_init_arr = new int[10](); // uncommon usage
int* heap_init_error = new int[10](12); // bad syntax
int* heap_init_arr2 = new int[10]{12}; // C++11 allows
... // (uncommon)

return 0;



CSE333, Summer 2025L13: C++ Class Details and Heap

Heap Example (class objects)

#include "Point.h"
using namespace std;

int main() {
...

31

arrays.cc

Point stack_point(1, 2);
Point* heap_point = new Point(1, 2);

Point* err_pt_arr = new Point[10]; // error-no Point() ctr
Point* err2_pt_arr = new Point[10](1,2); // bad syntax
Point* bad_pt_arr = new Point[10]{1,2}; // C++11 allows

...

delete heap_point;

...

return 0;
}

// (uncommon)



CSE333, Summer 2025L13: C++ Class Details and Heap

malloc vs. new

malloc() new

What is it? a function an operator or keyword

How often used (in C)? often never

How often used (in C++)? rarely often

Typed No Yes

Returns
a void*

(should be cast)
appropriate pointer type

(doesn’t need a cast)

When out of memory returns NULL throws an exception

Deallocating free() delete or delete[]

32



CSE333, Summer 2025L13: C++ Class Details and Heap

C++11 nullptr

❖ C and C++ have long used NULL as a pointer value that

references nothing
▪ Defined as a macro (often just the int zero)

34

▪ Interchangeable with NULL for all practical purposes, but it has

type T* for any/every T, and is not an integer value
• Avoids funny edge cases, especially with function overloading

(f(int) vs f(T*); see C++ references for details)

• Still can convert to/from integer 0 for tests, assignment, etc.

▪ Advice: prefer nullptr in C++11 code

• Though NULL will also be around for a long, long time

❖ C++11 introduced a new literal for this: nullptr
▪ New reserved keyword



CSE333, Summer 2025L13: C++ Class Details and Heap

Lecture Outline

❖ Class Details

▪ Rule of Three / Making Copies

▪ Access Controls and Friend Functions

▪ Namespaces

❖ Using the Heap

▪ new / delete / delete[]

▪ String Class Walkthrough

35



CSE333, Summer 2025L13: C++ Class Details and Heap

Heap Member Example

❖ Let’s build a class to simulate some of the functionality of

the C++ string

36

▪ Internal representation: c-string to hold characters

❖ We’ll want to implement:

▪ Constructors, including copy and conversion from C-string

▪ Assignment and destructor

▪ Length, append, and conversion to C-string

▪ Outputting to streams

Rule of Threes



CSE333, Summer 2025L13: C++ Class Details and Heap

Str Example Walkthrough

See:

Str.h

Str.cc

strtest.cc
https://courses.cs.washington.edu/courses/cse333/25su/lecture/12-c++-details+heap-example

❖ Look carefully at assignment operator=
▪ self-assignment test is especially important here

37



CSE333, Summer 2025L13: C++ Class Details and Heap

Don’t forget!

38

❖ Exercise 10

❖ Homework 2

❖ Get ready for the midterm!



CSE333, Summer 2025L13: C++ Class Details and Heap

Extra Exercise #1

❖ Write a C++ function that:

▪ Uses new to dynamically allocate an array of strings and uses

delete[] to free it

▪ Uses new to dynamically allocate an array of pointers to strings

• Assign each entry of the array to a string allocated using new

▪ Cleans up before exiting

• Use delete to delete each allocated string

• Uses delete[] to delete the string pointer array

• (whew!)

39


