
CSE333, Summer 2025L11: References, Const, Classes

C++ References, Const, Classes
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025L11: References, Const, Classes

Administrivia

❖ Exercise 8 due this morning

2

❖ No new exercise today – get ahead on hw2; longer

exercise coming Friday, due Monday morning

❖ Exercise grades through exercise 6 are posted

CSE333, Summer 2025L11: References, Const, Classes

Administrivia

3

❖ Sections this week: the material covered in lecture today

plusMakefiles

▪ Makefiles will not be covered in lecture

▪ Makefiles will be required for most exercises going forward

▪ Makefiles will probably be on the midterm

▪ Go to section!

CSE333, Summer 2025L11: References, Const, Classes

Administrivia

❖ Homework 2 due next Thursday (7/18)

4

▪ Note: libhw1.a (yours or ours) needs to be in correct directory

(hw1/) for hw2 to build

▪ Use Ctrl-D (eof) on a line by itself to exit searchshell; must

free all allocated memory

▪ Test on directory of small self-made files where you can predict

the data structures and then check them

▪ Valgrind takes a long time on the full test_tree. Try using enron

docs only or other small test data directory for quick checks.

CSE333, Summer 2025L11: References, Const, Classes

Midterm Exam 7/28 1:10 - 2:10 HRC 155

❖ Midterm topics and old exams are posted

▪ Available on the “Resources” page

5

CSE333, Summer 2025L11: References, Const, Classes

Midterm Exam 7/28 1:10 - 2:10 HRC 155

❖ Midterm topics and old exams are posted

▪ Available on the “Resources” page

6

▪ Closed book, slides, etc., but you may have one 5x8 notecard with

whatever handwritten notes you want on both sides

▪ Reference sheets with the declarations of useful functions will be

included on exam

CSE333, Summer 2025L11: References, Const, Classes

Midterm Exam 7/28 1:10 - 2:10 HRC 155

❖ Extra midterm points for coming to office hours next week

7

■ +5 points on the midterm (out of 100), but can’t go above 100

total

■ Must go to an existing, in-person office hours and bring a

problem set to work on; either from the extra-problems in the

slides, or an old midterm question

■ Make sure the TA writes down your name and netid

CSE333, Summer 2025L11: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

8

CSE333, Summer 2025L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’tmodify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z

Note: Arrow points
to next instruction.

10

CSE333, Summer 2025L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’tmodify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 5

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

11

CSE333, Summer 2025L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’tmodify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 6

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

12

CSE333, Summer 2025L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’tmodify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a4

Note: Arrow points
to next instruction.

13

CSE333, Summer 2025L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’tmodify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1;

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 10

z 0x7fff…a0

Note: Arrow points
to next instruction.

14

CSE333, Summer 2025L11: References, Const, Classes

Pointers Reminder

❖ A pointer is a variable containing an address

▪ Modifying the pointer doesn’tmodify what it points to, but you

can access/modify what it points to by dereferencing

▪ These work the same in C and C++

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1; // sets x to 6
x += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11

return EXIT_SUCCESS;
}

pointer.cc

x 7

y 11

z 0x7fff…a0

Note: Arrow points
to next instruction.

15

CSE333, Summer 2025L11: References, Const, Classes

References

❖ A reference is a direct alias for another variable

▪ Mutating a reference ismutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc
16

CSE333, Summer 2025L11: References, Const, Classes

Comparing our Examples

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference ismutating the aliased variable

▪ Introduced in C++ as part of the language

17

int main(int argc, char** argv) {
int x = 5, y = 10;
int* z = &x;

*z += 1;
x += 1;

z = &y;
*z += 1;

return EXIT_SUCCESS;
}

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

CSE333, Summer 2025L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference ismutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x;

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x 5

y 10

Note: Arrow points
to next instruction.

18

CSE333, Summer 2025L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference ismutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1;
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 5

y 10

Note: Arrow points
to next instruction.

19

CSE333, Summer 2025L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference ismutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1;

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 6

y 10

Note: Arrow points
to next instruction.

20

CSE333, Summer 2025L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference ismutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y;
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 7

y 10

Note: Arrow points
to next instruction.

21

You can’t rebind a
reference! You can
only bind it when it’s

declared

CSE333, Summer 2025L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference ismutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1;

return EXIT_SUCCESS;
}

reference.cc

x, z 10

y 10

Note: Arrow points
to next instruction.

22

CSE333, Summer 2025L11: References, Const, Classes

References

❖ A reference is an alias for another variable

▪ Alias: another name that is bound to the aliased variable

• Mutating a reference ismutating the aliased variable

▪ Introduced in C++ as part of the language

int main(int argc, char** argv) {
int x = 5, y = 10;
int& z = x; // binds the name "z" to x

z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7

z = y; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11

return EXIT_SUCCESS;
}

reference.cc

x, z 11

y 10

Note: Arrow points
to next instruction.

23

CSE333, Summer 2025L11: References, Const, Classes

References: Be Careful!

❖ The “&” character is used for multiple things in C++!
▪ When to the left of a value, it means “take the address of <value>”

24

x = &y; // sets x to the address of y

int* z = &y; // sets z to the address of y

▪ When to the right of a type, it means “reference to <type>”

OR

int& x = y; // declares x as a reference to y

CSE333, Summer 2025L11: References, Const, Classes

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc 25

Be careful! As a client you
might not expect the
arguments to change.

CSE333, Summer 2025L11: References, Const, Classes

main

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a 5

(main) b 10

Note: Arrow points
to next instruction.

26

CSE333, Summer 2025L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp

27

CSE333, Summer 2025L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

5

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

28

CSE333, Summer 2025L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

10

(main) b
(swap) y

10

Note: Arrow points
to next instruction.

(swap) tmp 5

29

CSE333, Summer 2025L11: References, Const, Classes

main

swap

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

(main) a
(swap) x

10

(main) b
(swap) y

5

Note: Arrow points
to next instruction.

(swap) tmp 5

30

CSE333, Summer 2025L11: References, Const, Classes

main

Pass-By-Reference

❖ C++ allows you to use real pass-by-reference

▪ Client passes in an argument with normal syntax

• Function uses reference parameters with normal syntax

• Modifying a reference parameter modifies the caller’s argument!

passbyreference.cc

(main) a 10

(main) b 5

Note: Arrow points
to next instruction.

31

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

CSE333, Summer 2025L11: References, Const, Classes

❖ At this point, which addresses are identical? In other words:

which pairs of names are aliases?
▪ &a == &b

▪ &a == &x

▪ &y == &tmp

33

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

CSE333, Summer 2025L11: References, Const, Classes

Pass-By-Reference: Mental Model

❖ A reference is an alias for another variable

▪ … so it's as if no additional space is allocated for it

▪ Unlike a pointer, which is a variable and does require space

34

Stack

Heap (malloc/free)

Read/Write Segment

Read-Only Segment

main
b,y 10

a,x 5

swap tmp 5

void swap(int& x, int& y) {
int tmp = x;
x = y;
y = tmp;

}

int main(int argc, char** argv) {
int a = 5, b = 10;

swap(a, b);
cout << "a: " << a << "; b: " << b << endl;
return EXIT_SUCCESS;

}

passbyreference.cc

CSE333, Summer 2025L11: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

35

CSE333, Summer 2025L11: References, Const, Classes

const

❖ const: this cannot be changed/mutated

▪ Produces a compile-time error if you try to change it

void BrokenPrintSquare(const int& i) {
i = i*i;
std::cout << i << std::endl;

}

int main(int argc, char** argv) {
int j = 2;
BrokenPrintSquare(j);
return EXIT_SUCCESS;

}

brokenpassbyrefconst.cc

36

▪ Signal of intent to compiler; meaningless at hardware level

// compiler error here!

CSE333, Summer 2025L11: References, Const, Classes

const

❖ Exists in C too

▪ But usedmuchmore in C++

37

FILE* fopen(char* filename, char* mode);

FILE* fopen(const char* filename, const char* mode);

Is actually

I promise not to change your
filename or mode strings out

from under you

CSE333, Summer 2025L11: References, Const, Classes

const and Pointers

❖ Since pointers are variables, they can be used to modify a

program's state by:

1) Changing the value of the pointer (what it points to)

2) Changing the thing the pointer points to (via dereference)

38

CSE333, Summer 2025L11: References, Const, Classes

const and Pointers

39

❖ const can be used to prevent either/both of these

behaviors!

❖ Since pointers are variables, they can be used to modify a

program's state by:

1) Changing the value of the pointer (what it points to)

2) Changing the thing the pointer points to (via dereference)

▪ const next to pointer name means you can’t change the value of

the pointer

▪ const next to data type pointed to means you can’t use this

pointer to change the thing being pointed to

CSE333, Summer 2025L11: References, Const, Classes

const and Pointers

❖ The syntax with pointers is confusing:

int main(int argc, char** argv) {
int x = 5; // int
const int y = 6; // (const int)
y++; // compiler error

return EXIT_SUCCESS;
}

constmadness.cc 40

const int *z = &y; // pointer to a (const int)
*z += 1; // compiler error
z++; // ok

int *const w = &x; // (const pointer) to a (variable int)
*w += 1; // ok
w++; // compiler error

const int *const v = &x; // (const pointer) to a (const int)
*v += 1; // compiler error
v++; // compiler error

CSE333, Summer 2025L11: References, Const, Classes

const Parameters

❖ A const parameter cannot

be mutated inside the

function

▪ Therefore it does not matter if

the argument is const (can

be mutated) or not

41

void foo(const int* y) {
std::cout << *y << std::endl;

}

int main(int argc, char** argv) {
int a = 10;
const int b = 20;

foo(&a); // OK
foo(&b); // OK

return EXIT_SUCCESS;
}

❖ A non-const parameter

could be mutated inside the

function

▪ It would be BAD if you could

pass it a const var

▪ Illegal regardless of whether or

not the function actually tries

to change the var

void bar(int* y) {
std::cout << *y << std::endl;

}

bar(&a); // OK
bar(&b); // not OK – error

CSE333, Summer 2025L11: References, Const, Classes

Google Style Guide Convention

❖ Use const references or call-by-value for input values

▪ Particularly for large values, use references (no copying)

43

void CalcArea(const int& width, const int& height,
int* const area) {

*area = width * height;
}

styleguide.cc

An ordinary int (not int&)
would probably be better
here, since it’s small, but
this shows how const refs

can be used

❖ Use const pointers for output parameters

❖ List input parameters first, then output parameters

CSE333, Summer 2025L11: References, Const, Classes

Lecture Outline

❖ C++ References

❖ const in C++

❖ C++ Classes Intro

44

CSE333, Summer 2025L11: References, Const, Classes

Classes

❖ Class definition syntax (in a .h file):

▪ Members can be functions (methods) or data (variables)

45

class Name {
public:
// public member declarations & definitions go here

private:
// private member declarations & definitions go here

}; // class Name

CSE333, Summer 2025L11: References, Const, Classes

Class Member Functions

❖ Class member functions can be:

46

retType Name::MethodName(type1 param1, …, typeN paramN) {
// body statements

}

class Name {
retType MethodName(type1 param1, …, typeN paramN);

}; // class Name

1. Declared within the class definition and then defined elsewhere

2. Defined within the class definition

■ typically only used for trivial method definitions, like getters/setters

class Name {
retType MethodName(type1 param1, …, typeN paramN) {
// body statements

}
}; // class Name

.h file

.c file

.h file

CSE333, Summer 2025L11: References, Const, Classes

Class Organization (.h/.cc)

❖ It’s a little more complex than in C when modularizing

with struct definition:

▪ Class definition is part of interface and should go in .h file

• Private members still must be included in definition (!)

47

▪ Usually put member function definitions into companion .cc file

with implementation details

▪ These files can also include non-member functions that use the

class (more about this later)

❖ Unlike Java, you can name files anything you want

▪ But normally Name.cc and Name.h for class Name

CSE333, Summer 2025L11: References, Const, Classes

Class Definition (.h file)

48

#ifndef POINT_H_
#define POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() { return x_; } // inline member function
int get_y() { return y_; } // inline member function
double Distance(const Point& p); // member function
void SetLocation(const int x, const int y); // member function

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

These are
defined

These are
just declared

Everything
under here is

private

CSE333, Summer 2025L11: References, Const, Classes

Class Member Definitions (.cc file)

49

#include <cmath>
#include "Point.h"

Point::Point(const int x, const int y) {
x_ = x;
this->y_ = y; // "this->" is optional unless name conflicts

}

double Point::Distance(const Point& p) const {
// We can access p’s x_ and y_ variables either through the
// get_x(), get_y() accessor functions or the x_, y_ private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x_ - p.get_x()) * (x_ - p.get_x());
distance += (y_ - p.y_) * (y_ - p.y_);
return sqrt(distance);

}

void Point::SetLocation(const int x, const int y) {
x_ = x;
y_ = y;

}

Point.cc

Use
ClassName::MethodName

when defining

The method name is the
class name for constructors

CSE333, Summer 2025L11: References, Const, Classes

Class Usage (a different .cc file)

50

#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
Point p1(1, 2); // allocate a new Point on the Stack
Point p2(4, 6); // allocate a new Point on the Stack

cout << "p1 is: (" << p1.get_x() << ", ";
cout << p1.get_y() << ")" << endl;

cout << "p2 is: (" << p2.get_x() << ", ";
cout << p2.get_y() << ")" << endl;

cout << "dist : " << p1.Distance(p2) << endl;
return 0;

}

usepoint.cc

You can break your
prints into many

lines

CSE333, Summer 2025L11: References, Const, Classes

Class Usage (a different .cc file)

51

#include <iostream>
#include "Point.h"

using namespace std;

int main(int argc, char** argv) {
Point p1(1, 2); // allocate a new Point on the Stack
const Point p2(4, 6); // allocate a new Point on the Stack

cout << "p1 is: (" << p1.get_x() << ", ";
cout << p1.get_y() << ")" << endl;

cout << "p2 is: (" << p2.get_x() << ", ";
cout << p2.get_y() << ")" << endl;

cout << "dist : " << p1.Distance(p2) << endl;
return 0;

}

usepoint.cc

// Compiler error
// Compiler error

CSE333, Summer 2025L11: References, Const, Classes

Class Definition (.h file)

52

#ifndef POINT_H_
#define POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() { return x_; } // inline member function
int get_y() { return y_; } // inline member function
double Distance(const Point& p); // member function
void SetLocation(const int x, const int y); // member function

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

CSE333, Summer 2025L11: References, Const, Classes

Class Definition (.h file)

53

#ifndef POINT_H_
#define POINT_H_

class Point {
public:
Point(const int x, const int y); // constructor
int get_x() const { return x_; } // inline member function
int get_y() const { return y_; } // inline member function
double Distance(const Point& p) const; // member function
void SetLocation(const int x, const int y); // member function

private:
int x_; // data member
int y_; // data member

}; // class Point

#endif // POINT_H_

Point.h

CSE333, Summer 2025L11: References, Const, Classes

Reading Assignment

❖ Before next time, youmust read the sections in C++

Primer covering class constructors, copy constructors,

assignment (operator=), and destructors

54

▪ Ignore “move semantics” for now

▪ The table of contents and index are your friends…

CSE333, Summer 2025L11: References, Const, Classes

Reading Assignment

❖ Go to
https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE_UW/1juclfo/alma99162157785001452

▪ You can also search the uw library for “C++ Primer Plus”

❖ Click on the link to O'Reilly Academic.

55

❖ Use the table of contents to navigate to
▪ 10.7-10.9

• “Declaring and Defining Constructors”

• “Using Constructors”

• “Default Constructors”

▪ 12.2-12.4
• “Special Member Functions”

• “Back to Stringbad:…”

• “More Stringbad Problems:…”

CSE333, Summer 2025L11: References, Const, Classes

Reading Assignment

56

❖ Seriously – the next lecture will make a lotmore sense if you’ve done

some background reading ahead of time

▪ Don’t worry whether it all makes sense the first time you read it – it

won’t! The goal is to be aware of what the main issues are….

❖ There will be a poll at the beginning of class on what you’ve read

CSE333, Summer 2025L11: References, Const, Classes

Makefiles

❖ Don’t forget to go to section tomorrow to learn about

Makefiles!

57

CSE333, Summer 2025L11: References, Const, Classes

Extra Exercise #1

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional point

▪ Has the following methods:

• Return the inner product of two 3D points

• Return the distance between two 3D points

• Accessors and mutators for the x, y, and z coordinates

58

CSE333, Summer 2025L11: References, Const, Classes

Extra Exercise #2

❖ Write a C++ program that:

▪ Has a class representing a 3-dimensional box

• Use your Extra Exercise #1 class to store the coordinates of the

vertices that define the box

• Assume the box has right-angles only and its faces are parallel to the

axes, so you only need 2 vertices to define it

▪ Has the following methods:

• Test if one box is inside another box

• Return the volume of a box

• Handles <<, =, and a copy constructor

• Uses const in all the right places

59

