YA UNIVERSITY of WASHINGTON L11: References, Const, Classes

C++ References, Const, Classes
CSE 333

Instructor: Alex Sanchez-Stern

Teaching Assistants:
Audrey Seo

Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Administrivia

+» Exercise 8 due this morning

« No new exercise today — get ahead on hw2; longer
exercise coming Friday, due Monday morning

«» Exercise grades through exercise 6 are posted

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Administrivia

Sections this week: the material covered in lecture today
plus Makefiles

Y/
L X4

= Makefiles will not be covered in lecture
= Makefiles will be required for most exercises going forward
= Makefiles will probably be on the midterm

= Go to section!

w UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Administrivia

Homework 2 due next Thursday (7/18)

Note: 1ibhwl . a (yours or ours) needs to be in correct directory
(hwl/) for hw2 to build

Use Ctrl-D (eof) on a line by itself to exit searchshell; must
free all allocated memory

Test on directory of small self-made files where you can predict
the data structures and then check them

Valgrind takes a long time on the full test_tree. Try using enron
docs only or other small test data directory for quick checks.

YA UNIVERSITY of WASHINGTON L11: References, Const, Classes

Midterm topics and old exams are posted

= Available on the “Resources” page

CSE 333: Systems Programming Home Calendar Assignments Resources Message Board

Resources

Suggestion: bookmark this page in your web browser for quick access.

CSE 333 Administrative Info

Syllabus

Academic Integrity

Course Calendar

Lectures

Sections

Assignments

Gradescope (exercise submission and all grading)

Course Canvas page (Office hour zoom links and gradebook pri 7y)

[Exams (including exam topic lists and old exams for studying)

Computing logistics
Using VS Code and other editors to do remote editing on the attu machines

Using SCP to transfer files from the attu machines

CSE333, Summer 2025

Midterm Exam 7/28 1:10 - 2:10 HRC 155

w UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Midterm Exam 7/28 1:10 - 2:10 HRC 155

+» Midterm topics and old exams are posted

= Available on the “Resources” page

* Closed book, slides, etc., but you may have one 5x8 notecard with
whatever handwritten notes you want on both sides

= Reference sheets with the declarations of useful functions will be
included on exam

YA UNIVERSITY of WASHINGTON L11: References, Const, Classes

CSE333, Summer 2025

Midterm Exam 7/28 1:10 - 2:10 HRC 155
«» Extra midterm points for coming to office hours next week

m +5 points on the midterm (out of 100), but can’t go above 100
total
B Must go to an existing, in-person office hours and bring a

problem set to work on; either from the extra-problems in the
slides, or an old midterm question

m Make sure the TA writes down your name and netid

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Lecture Outline

¢ C++ References
& constin C++

& C++ Classes Intro

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON

Pointers Reminder

L11: References, Const, Classes

Note: Arrow points
to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

(. . .
int main(int argc, char** argv)

int x =5, y = 10;

—> int* z = &x;

*z += 1;
x += 1;

z = &y,
*z += 1;

return EXIT SUCCESS;

{

J/

pointer.cc

‘x 5
‘y 10
|z

10

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON

Pointers Reminder

L11: References, Const, Classes

« A pointer is a variable containing an address

Note: Arrow points
to next instruction.

* Modifying the pointer doesn’t modify what it points to, but you

can access/modify what it points to by dereferencing

= These work the same in C and C++

(. . .
int main(int argc, char** argv)

int x =5, y = 10;
int* z = &x;

- x; = 1;

x += 1;

z = &y,
*z += 1;

return EXIT SUCCESS;
}

\.

{

J/

pointer.cc

| x
|y

|z

10

Ox7fff. a4

11

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

Pointers Reminder to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

-)) ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ x 6
int* z = &x;

*z += 1; // sets x to 6

—’ x += 1; ‘ \'4 10
z = &y,
*z += 1;

return EXIT_ SUCCESS; ‘ z Ox7fff..a4

}

. J
pointer.cc

12

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

Pointers Reminder to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

-)) ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ x 7
int* z = &x;

*z += 1; // sets x to 6

x +=1; // sets x (and *z) to 7 ‘ y 10
-4'>' z = &Yy
“Zoa= g

return EXIT_ SUCCESS; ‘ z Ox7fff..a4

}

. J
pointer.cc

13

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

Pointers Reminder to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

-)) ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ x 7
int* z = &x;

*z += 1; // sets x to 6

x +=1; // sets x (and *z) to 7 ‘ y 10
z = &y; // sets z to the address of y
-*'F'*z += 1
return EXIT SUCCESS; ‘ z Ox7frf.a0
\} J

pointer.cc
14

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

Pointers Reminder to next instruction.

« A pointer is a variable containing an address

* Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

-)) ™
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ x 7
int* z = &x;

*z +=1; // sets x to 6
x +=1; // sets x (and *z) to 7 ‘ y 11

z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11

= rcturn EXIT SUCCESS; ‘ z Ox7fff..a0

}

. J
pointer.cc

15

YA UNIVERSITY of WASHINGTON

References

0
L. %4

A reference is a direct alias for another variable

= Mutating a reference is mutating the aliased variable

L11: References, Const, Classes

= |ntroduced in C++ as part of the language

(

int main(int argc, char** argv)
int x =5, y = 10;

int& z = x;
z += 1;
x += 1;
= Y
z += 1;

return EXIT SUCCESS;

{

J/

reference.cc

CSE333, Summer 2025

16

YA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Comparing our Examples

+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

CSE333, Summer 2025

7

N
int main(int argc, char** argv) { int main(int argc, char** argv)
int x =5, y = 10; int x = 5, y = 10;
int& z = x; int* z = &x;
7z = Lg *z += 1;
x += 1; x += 1;
= Vs = &Y7;
z += 1; *z += 1;
return EXIT SUCCESS; return EXIT SUCCESS;
} }
\ J _

17

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

References to next instruction.

+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

4 ™
int main(int argc, char** argv) {
int x =5, y = 10; ‘x 5
—> int& z = x;
z += 1;
X += 1; ‘ Yy 10
z = y;
z += 1;
return EXIT SUCCESS;
}
\. y,

reference.cc
18

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

References to next instruction.

<+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

4 A
int main(int argc, char** argv) {
int x =5, y = 10; ‘ X, Z 5
int& z = x; // binds the name "z" to x
- = 1;
X += 1; ‘ Yy 10
z =Y
z += 1;
return EXIT SUCCESS;
}
. J

reference.cc
19

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

References to next instruction.

<+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

e N
int main(int argc, char** argv) {
int x =5, y = 10; ‘ X, z 6
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
- = 1; ‘ y 10
z = y;
z += 1;
return EXIT SUCCESS;
}
_ J

reference.cc
20

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

References to next instruction.

<+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

4 N\
int main(int argc, char** argv) {
int x = 5, y = 10; ‘ X, Z 7
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x += 1; // sets x (and z) to 7 ‘ y 10
’ 2 = Y You can’t rebind a
z += 1; reference! You can
return EXIT SUCCESS; only bind it when it’s
} - declared
_

reference.cc
21

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

References to next instruction.

<+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

r N
int main(int argc, char** argv) {

int x =5, y = 10; ‘ X, z 10
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x +=1; // sets x (and z) to 7 ‘ y 10
z =vy; // sets z (and x) to the value of y

-z - 1;
return EXIT SUCCESS;

\} y

reference.cc
22

YA UNIVERSITY of WASHINGTON

L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points
to next instruction.

References

<+ A reference is an alias for another variable

= Alias: another name that is bound to the aliased variable

- Mutating a reference is mutating the aliased variable

= |ntroduced in C++ as part of the language

r N
int main(int argc, char** argv) {
int x =5, y = 10; ‘ X, z 11
int& z = x; // binds the name "z" to x
z += 1; // sets z (and x) to 6
x +=1; // sets x (and z) to 7 ‘ y 10
z =vy; // sets z (and x) to the value of y
z += 1; // sets z (and x) to 11
=P rcturn EXIT SUCCESS;
\} y

reference.cc

23

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

References: Be Careful!

« The “&” character is used for multiple things in C++!
= When to the left of a value, it means “take the address of <value>"

[x = &y; // sets x to the address of y]

OR

[int* z = &y; // sets z to the address of y]

= When to the right of a type, it means “reference to <type>”

[int& x =vy; // declares x as a reference to y]

24

YA UNIVERSITY of WASHINGTON L11:

Pass-By-Reference

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

« Function uses reference parameters with normal syntax

References, Const, Classes

CSE333, Summer 2025

- Modifying a reference parameter modifies the caller’s argument!

(. . .
volid swap(int& x, 1nté& y) {

int tmp = x;
X =V
y = tmp;

}

int a =5, b = 10;

swap (a, b);
cout << "a: " K a <« ";
return EXIT SUCCESS;

)

int main(int argc, char** argv) {

b: " << b << endl;

J

passbyreference.cc

Be careful! As a client you
might not expect the
arguments to change.

25

YA UNIVERSITY of WASHINGTON

Pass-By-Reference

L11: References, Const, Classes

CSE333, Summer 2025

Note: Arrow points
to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

« Function uses reference parameters with normal syntax

- Modifying a reference

parameter modifies the caller’s argument!

. . ,)
vold swap(int& x, 1nté& vy) { main
int tmp = x; .
B e | (main) a 5
X Vs
y = tmp;
}
int main(int argc, char** argv) { | (main) b 10
int a =5, b = 10;
= swap (a, b);
cout << "a: " <K<K a <<« "; b: " <K<K b << endl;
return EXIT SUCCESS;
\} J

passbyreference.cc 26

w UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

Pass-By-Refe rence to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
« Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

. . . N
‘ void swap(int& x, 1nté& y) | main
int tmp = x;)
_ .p (main) a
X = V; 5
vy = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp
\} J

passbyreference.cc 27

w UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

Pass-By-Refe rence to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
« Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

. . . N
(v01d swap (inté& x, 1nté& y) | main
int tmp = x;)
_ .p (main) a
* X = y, 5
vy = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp 5
\} J

passbyreference.cc)8

YA UNIVERSITY of WASHINGTON

Pass-By-Reference

L11: References, Const, Classes

CSE333, Summer 2025

Note: Arrow points
to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

« Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

. . . N
(v01d swap (1nté& x, int& y) | main
int tmp = x; .
main) a
X = yi () 10
_> vy = tmp; (swap) x
}
int main(int argc, char** argv) { (main) b 10
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp 5
\} J

passbyreference.cc

29

w UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Note: Arrow points

Pass-By-Refe rence to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax
« Function uses reference parameters with normal syntax

- Modifying a reference parameter modifies the caller’s argument!

(. . .)
void swap(inté& x, inté& y) | main
int tmp = x; (main) a
main
X = V; 10
vy = tmp; (swap) x
int main(int argc, char** argv) { (main) b 5
int a = 5, b = 10; (swap) y
swap (a, b); swap
cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS; (swap) tmp 5
\} J

passbyreference.cc 30

YA UNIVERSITY of WASHINGTON

Pass-By-Reference

L11: References, Const, Classes

CSE333, Summer 2025

Note: Arrow points
to next instruction.

«» C++ allows you to use real pass-by-reference

= Client passes in an argument with normal syntax

« Function uses reference parameters with normal syntax

- Modifying a reference

parameter modifies the caller’s argument!

. . .)
volid swap(int& x, 1nté& y) | main
int tmp = x; .
B .p | (main) a 10
X Y,
y = tmp;
}
int main(int argc, char** argv) { | (main) b S
int a =5, b = 10;
swap (a, b);
=P cout << "a: " << a << "; b: " << b << endl;
return EXIT SUCCESS;
\} J

passbyreference.cc 31

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

« At this point, which addresses are identical? In other words:
which pairs of names are aliases?

= &a == &b
B &a == &X
= &y == &tmp
4 . . .)
vold swap (1nt& x, 1nté& y) |
int tmp = x;
X = y;
y = tmp;
int main(int argc, char** argv) {
int a =5, b = 10;
swap (a, b);
cout << "a: " <K<K a <<« "; b: " <K<K b << endl;
return EXIT SUCCESS;
_ J J

passbyreference.cc 33

YA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

CSE333, Summer 2025

Pass-By-Reference: Mental Model

0
L. %4

A reference is an alias for another variable

= ...soit's as if no additional space is allocated for it

= Unlike a pointer, which is a variable and does require space

Stack
- ~N a,x 5
void swap(int& x, int& y) { main
int tmp = x; D,y
X = y;
= tmp;
+} Y mp Swap tmp 5
int main(int argc, char** argv) { *
int a =5, b = 10;
swap (a, b); ?
cout << "a: << a < "; Db: << b << endl; Heap(wm”ocﬂ%ee)
return EXIT SUCCESS;
} Read/Write Segment
\ J
passbyreference.cc| Read-Only Segment

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Lecture Outline

¢« C++ References
¢ constin C++

& C++ Classes Intro

35

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

const

+» const:this cannot be changed/mutated

= Produces a compile-time error if you try to change it

= Signal of intent to compiler; meaningless at hardware level

-
void BrokenPrintSquare (const inté& 1) {
i1 =1i*i; // compiler error here!
std::cout << 1 << std::endl;
}

int main(int argc, char** argv) {
int J = 2;
BrokenPrintSquare (j) ;
return EXIT SUCCESS;

}

\. J

brokenpassbyrefconst.cc

36

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

const

« Existsin C too

= But used much more in C++

[FILE* fopen (char* filename, char* mode);]

|s actually

[FILE* fopen (const char* filename, const char* mode);]

OO

| promise not to change your
filename or mode strings out
from under you':*

37

YA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

const and Pointers

CSE333, Summer 2025

« Since pointers are variables, they can be used to modify a

program's state by:

1) Changing the value of the pointer (what it points to)

2) Changing the thing the pointer points to (via dereference)

W UNIVERSITY of WASHINGTON

Pointers Reminder

CSE333, Spring 2024

Note: Arrow points
to next instruction.

« A pointer is a variable containing an address

= Modifying the pointer doesn’t modify what it points to, but you
can access/modify what it points to by dereferencing

= These work the same in C and C++

(i

int main (int argc, char** argv) ({
int x =5, y =
int* 'z = &x;
*z += 1; // sets x to 6

X += 1; // sets x (and *z) to 7

z = &y; // sets z to the address of y
*z += 1; // sets y (and *z) to 11
=tep return EXIT_SUCCESS;
}
4 J
pointer.cc

(= [7]
v [u]
| 4 I 'vt"fasf...ﬁ I

13

38

w UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

const and Pointers

« Since pointers are variables, they can be used to modify a
program's state by:
1) Changing the value of the pointer (what it points to)
2) Changing the thing the pointer points to (via dereference)

«» const can be used to prevent either/both of these
behaviors!

" const next to pointer name means you can’t change the value of
the pointer

"= const next to data type pointed to means you can’t use this
pointer to change the thing being pointed to

®)

-y
®
-

39

L11: References, Const, Classes CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON

const and Pointers

« The syntax with pointers is confusing:

s

int main(int argc, char** argv) {

int x = 5;
const int y = 6;
y++;

const int *z = &y;
~z += 1;
zZ++;

int *const w = &X;
*w o += 1;
wt+;

const int *const v =
*v += 1;
v++;

return EXIT_SUCCESS;

&X;

//
//
//

//
//
//

//
//
//

//
//
//

int
(const 1int)
compiler error

pointer to a (const int)
compiler error
ok

(const pointer) to a (variable 1int)
ok
compiler error

(const pointer) to a (const int)
compiler error
compiler error

J

constmadness.cc 4

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

const Parameters

» A const parameter cannot (void foo(const int* y) { 1
. std::cout << *y << std::endl;
be mutated inside the }
function
void bar (int* vy) {
= Therefore it does not matter if std::cout << *y << std::endl;
the argument is const (can }
bernLNated)CN'not int main(int argc, char** argv) {
int a = 10;
+ A non-const parameter const int b = 20;
could be mutated inside the foo(sa); // OK
function foo(&b); // OK
bar (&a) ; // OK
= |t would be BAD if you could bar (¢b); // not OK — error
passita const var return EXIT SUCCESS;
= |llegal regardless of whether or . /

not the function actually tries

to change the var
41

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Google Style Guide Convention

« Use const references or call-by-value for input values

= Particularly for large values, use references (no copying)
+» Use const pointers for output parameters

+ List input parameters first, then output parameters

An ordinary int (not int&)
would probably be better
here, since it’s small, but

this shows how const refs
can be used

volid CalcArea (const i1nt& width, const 1nt& height,
int* const area) {
*area = width * height;

styleguide.cc
43

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Lecture Outline

¢« C++ References
& constin C++

¢ C++ Classes Intro

44

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Classes

« Class definition syntax (in a .h file):

class Name {
public:
// public member declarations & definitions go here

private:
// private member declarations & definitions go here
}; // class Name

_ J

= Members can be functions (methods) or data (variables)

45

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Class Member Functions

<« Class member functions can be:

1. Declared within the class definition and then defined elsewhere

class Name {
retType MethodName (typel paraml, .., typeN paramN) ; h file
}Y; // class Name

4)

retType Name: :MethodName (typel paraml, .., typeN paramN) {
// body statements c file

}

. J

2. Defined within the class definition

m typically only used for trivial method definitions, like getters/setters

7

class Name {
retType MethodName (typel paraml, .., typeN paramN) {
// body statements _h'ﬂ|e

}
}; // class Name

\ J

46

CSE333, Summer 2025

YA UNIVERSITY of WASHINGTON L11: References, Const, Classes

Class Organization (.h/.cc)

« It's a little more complex than in C when modularizing

with st ruct definition:

= Class definition is part of interface and should go in . h file
« Private members still must be included in definition (!)

= Usually put member function definitions into companion . cc file
with implementation details

= These files can also include non-member functions that use the
class (more about this later)

« Unlike Java, you can name files anything you want

*

* But normally Name.cc and Name.hforclass Name

47

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Class Definition (. h file)

Point.h
4)
#ifndef POINT H
#define POINT H
— = These are
class Point { deﬁned
public:
Point (const int x, const int vy)g // constructor
int get x() { return x ; } // inline member function
int get y() { returny ; } // inline member function
double Distance (const Pointé& p):; // member function

void SetlLocation (const int x, const int y); // member function

private:
int x ; // data menpe
int y ; // data member under here is
}; // class Point private

Everything These are
just declared

#endif // POINT H
L i

48

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Class Member Definitions (. cc file)

Point.cc
(4include <cmath> The method name is the N
#include "Point.h" class name for constructors
Point: :Point(const int x, const int y) {
X = X;
tgis—>y_ = vy; // "this->" is optional unless name conflicts

double Point::Distance (const Pointé& p) const {
// We can access p’s x and y variables either through the
// get x(), get y() accessor functions or the x , y private
// member variables directly, since we’re in a member
// function of the same class.
double distance = (x - p.get x()) * (x - p.get x());
distance += (y_ - p.y) * (y_ - p.Y_)7
return sqrt(distance);

Use
ClassName::MethodName

when defining
const int y) {

volid Point: :SetlLocation (const int x,
X = X;
Y = Ys

49

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Class Usage (a different . cc file)

usepoint.cc

([.
#include <iostream>

#include "Point.h"

using namespace std; You can break your
int main(int argc, char** argv) { prlnts |.nto many
Point pl(l, 2); // allocate a new Point on lines
Point p2(4, 6); // allocate a new Point on
cout << "pl is: (" << pl.get x() << ", ";
cout << pl.get y () << ")" << endl;
cout << "p2 is: (" << p2.get x() << ", ";
cout << p2.get_y () << ")" << endl;
cout << "dist : " << pl.Distance (p2) << endl;
return O;
}

50

YA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Class Usage (a different . cc file)

usepoint.cc

([.
#include <iostream>

#include "Point.h"
using namespace std;

int main(int argc,

Point pl (1, 2);
const |Point p2 (4,
cout << "pl 1is: ("
cout << pl.get y ()
cout << "p2 is: ("
cout << p2.get y ()
cout << "dist

return O;

0);

<<
<<

<<
<<

" << pl.Distance (p2)

char** argv) {
// allocate a new Point on the Stack

// allocate a new Point on the Stack

pl.get x() << ", ";

n) "ol endl;

pZ2.get x() << ", ";|// Compiler error
")" << endl; // Compiler error

<< endl;

~

CSE333, Summer 2025

51

YA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Class Definition (. h file)

CSE333, Summer 2025

Point.h

(4ifndef POINT H
#define POINT H

class Point {

int get y() { returny ; }

void SetLocation(const int x,

private:
int x ; // data member
int y ; // data member
}; // class Point

#endif // POINT H
L _a

public:
Point (const int x, const int y); //
int get x() { return x ; } //

//

double Distance (const Pointé& p);

const int

constructor

inline member function

inline member function
// member function

y): // member function

~

52

YA UNIVERSITY of WASHINGTON

L11: References, Const, Classes

Class Definition (. h file)

CSE333, Summer 2025

private:
int x ; // data member
int y ; // data member
}; // class Point

#endif // POINT H
L _a

Point.h
4)
#ifndef POINT H
#define POINT H
class Point {
public:
Point (const int x, const int vy); // constructor
int get x() |const |{ return x ; } // inline member function
int get y () { return y ; } inline member function
double Distance (const Pointé& p) |fconst; // member function
void SetlLocation (const int x, const int y); // member function

53

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Reading Assignment

« Before next time, you must read the sections in C++
Primer covering class constructors, copy constructors,
assignment (operator=), and destructors

= |gnore “move semantics” for now

= The table of contents and index are your friends...

54

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Reading Assignment

¢ @Goto

https://orbiscascade-washington.primo.exlibrisgroup.com/permalink/01ALLIANCE UW/1juclfo/alma99162157785001452

= You can also search the uw library for “C++ Primer Plus”
« Click on the link to O'Reilly Academic.

« Use the table of contents to navigate to

= 10.7-10.9

- “Declaring and Defining Constructors”
- “Using Constructors”
- “Default Constructors”

= 12.2-12.4
- “Special Member Functions”
- “Back to Stringbad: ...”
- “More Stringbad Problems: ...”

55

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Reading Assignment

< Seriously — the next lecture will make a lot more sense if you’ve done
some background reading ahead of time

= Don’t worry whether it all makes sense the first time you read it — it
won’t! The goal is to be aware of what the main issues are....

< There will be a poll at the beginning of class on what you’ve read

56

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Makefiles

«» Don’t forget to go to section tomorrow to learn about
Makefiles!

57

W UNIVERSITY of WASHINGTON L11: References, Const, Classes CSE333, Summer 2025

Extra Exercise #1

«» Write a C++ program that:
= Has a class representing a 3-dimensional point

= Has the following methods:

- Return the inner product of two 3D points
- Return the distance between two 3D points

- Accessors and mutators for the x, y, and z coordinates

58

YA UNIVERSITY of WASHINGTON L11: References, Const, Classes

CSE333, Summer 2025

Extra Exercise #2

«» Write a C++ program that:

= Has a class representing a 3-dimensional box

- Use your Extra Exercise #1 class to store the coordinates of the
vertices that define the box

- Assume the box has right-angles only and its faces are parallel to the
axes, so you only need 2 vertices to define it

= Has the following methods:

- Test if one box is inside another box

-« Return the volume of a box

- Handles <<, =, and a copy constructor
- Uses const in all the right places

59

