
CSE333, Summer 2025L08: Syscall Details, C++ Intro

System Calls Continued & C++ Intro
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Administrivia

❖ Homework 1 was due last night

2

❖ Exercise 7 was due this morning

❖ Exercise 8 is posted this morning, but not due until

Wednesday

▪ It’s on C++, and we’ll be finishing our C++ intro on Monday

❖ Don’t forget to use cpplint on all your assignments!

▪ Linter errors are correctness errors in this course

❖ Homework 2 starter code is being pushed by tonight

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Todays Plan

❖ System Calls Details

❖ C++ Intro

3

CSE333, Summer 2025L08: Syscall Details, C++ Intro

OS
(trusted)

HW (trusted)
P
ro
ce
ss
A

(u
n
tr
u
st
ed

)

P
ro
ce
ss
B

(u
n
tr
u
st
ed

)

P
ro
ce
ss
C

(u
n
tr
u
st
ed

)

P
ro
ce
ss
D

(t
ru
st
ed

)

System Calls

4

sy
st
em

ca
ll

Linux kernel

Your program

❖ Like function calls, but into the
operating system

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

❖ A more detailed picture:

▪ Consider a typical Linux process

5

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

▪ Its thread of execution can be in one

of several places:

• In your program’s code

• In glibc, a shared library containing
the C standard library, POSIX, support,

and more

• In the Linux architecture-independent

code

• In Linux x86_64 code

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

❖ Some routines your program

invokes may be entirely handled

by glibc without involving the

kernel

▪ e.g. strcmp() from stdio.h

6

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

▪ There is some initial overhead when

invoking functions in dynamically

linked libraries (during loading)

• But after symbols are resolved,

invoking glibc routines is basically

as fast as a function call within your

program itself!

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

❖ Some routines may be handled

by glibc, but they in turn
invoke Linux system calls

7

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

▪ e.g. POSIX wrappers around Linux

syscalls
• POSIX readdir() invokes the

underlying Linux readdir()

▪ e.g. C stdio functions that read

and write from files

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
close(), write(), etc.

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

❖ Your program can choose to

directly invoke Linux system calls

as well

▪ Nothing is forcing you to link with

glibc and use it

8

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

▪ But relying on directly-invoked Linux

system calls may make your program

less portable across UNIX varieties

• (And won’t be portable to non-Unix

systems like Windows that run

standard C on top of their own,

different syscalls)

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

❖ Let’s walk through how a Linux

system call actually works

9

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux kernel

Your program

▪ We’ll assume 32-bit x86 using the

modern SYSENTER / SYSEXIT x86

instructions

• x86-64 code is similar, though details

always change over time, so take this

as an example – not a debugging

guide

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

Remember our

process address

space picture?

▪ Let’s add some

details:

10

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

Process is executing your

program code

11

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

Process calls into a

glibc function

▪ e.g. fopen()

▪ We’ll ignore the

messy details of

loading/linking

shared libraries

12

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

glibc begins the process

of invoking a Linux system

call

13

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

IP

SP

▪ glibc’s
fopen() will likely

invokes Linux’s

open() system

call

▪ Puts the system call # and

arguments into registers

▪ Uses the call x86

instruction to call into the

routine

__kernel_vsyscall
located in

linux-gate.so

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

linux-gate.so is a

vdso

▪ A virtual

dynamically-linked shared

object

14

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

IP

SP

▪ Is a kernel-provided

shared library that is

plunked into a process’

address space

▪ Provides the intricate

machine code needed to

trigger a system call

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

linux-gate.so
eventually invokes

the SYSENTER x86

instruction

15

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

IP
SP

■ Changes page table to give
kernel access to all memory

▪ SYSENTER is x86’s “fast

system call” instruction

• Causes the CPU to raise its

privilege level

• Traps into the Linux kernel

by changing the SP, IP to a

previously-determined

location

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux
The kernel begins executing

code at the

SYSENTER entry point

▪ Is in the

architecture-dependent part

of Linux

▪ It’s job is to:

• Look up the system call

number in a system call

dispatch table

• Call into the address stored in

that table entry; this is Linux’s

system call handler

– For open(), the handler
is named sys_open, and
is system call #5

16

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

IP
SP

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

The system call

handler executes

▪ What it does is

system-call specific

17

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

IP
SP

▪ It may take a long time to

execute, especially if it has

to interact with hardware

• Linux may choose to

context switch the CPU to

a different runnable

process

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

Eventually, the

system call handler

finishes

▪ Returns back to the

system call entry point

• Places the system call’s

return value in the

appropriate register

• Calls SYSEXIT to return
to the user-level code

18

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

priv

IP
SP

■ Changes page table back

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

SYSEXIT transitions the

processor back to

user-mode code

▪ Restores the

IP, SP to

user-land values

▪ Sets the CPU

back to

unprivileged mode

▪ Returns the processor

back to glibc

19

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Details on x86/Linux

glibc continues to

execute

▪ Might execute more

system calls

▪ Eventually

returns back to

your program code

20

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

CPU

Linux kernel

Your program0xFFFFFFFF

0x00000000

Linux
kernel

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Shared Libraries

Read-Only Segment
.text, .rodata

linux-gate.so

kernel stack

unpriv

SP

IP

CSE333, Summer 2025L08: Syscall Details, C++ Intro

strace

❖ A useful Linux utility that shows the sequence of system

calls that a process makes:

21

bash$ strace ls 2>&1 | less
execve("/usr/bin/ls", ["ls"], [/* 41 vars */]) = 0
brk(NULL) = 0x15aa000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =

0x7f03bb741000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or

directory)
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=126570, ...}) = 0
mmap(NULL, 126570, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f03bb722000
close(3) = 0
open("/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300j\0\0\0\0\0\0"...,

832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=155744, ...}) = 0
mmap(NULL, 2255216, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =

0x7f03bb2fa000
mprotect(0x7f03bb31e000, 2093056, PROT_NONE) = 0
mmap(0x7f03bb51d000, 8192, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x23000) = 0x7f03bb51d000
... etc ...

CSE333, Summer 2025L08: Syscall Details, C++ Intro

If You’re Curious

❖ Download the Linux kernel source code

▪ Available from http://www.kernel.org/

❖ man, section 2: Linux system calls

▪ man 2 intro

▪ man 2 syscalls

❖ man, section 3: glibc/libc library functions

▪ man 3 intro

❖ The book: The Linux Programming Interface by Michael

Kerrisk (keeper of the Linux man pages)
22

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Todays Plan

❖ System Calls Details

❖ C++ Intro

23

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Today’s C++ Goals

❖ An introduction to C++

24

❖ Advice: Read related sections in the C++ Primer!

▪ Available for free through UW libraries (O’Reilly books online)

▪ It’s hard to learn the “why is it done this way” from reference

docs, and even harder to learn from random stuff on the web

▪ Lectures and examples will introduce the main ideas, but aren’t

everything you’ll want need to understand

▪ Some comparisons to C and shortcomings that C++ addresses

▪ Give you a perspective on how to learn C++

▪ Kick the tires and look at some code

▪ Not trying to explain all the details, just an introduction.

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C

❖ We had to work hard to mimic encapsulation, abstraction

26

▪ Encapsulation: hiding implementation details

• Used header file conventions and the “static” specifier to separate

private functions from public functions

• Cast structure pointers to (void*) to hide details

▪ Operational Abstraction: associating behavior with

encapsulated state

• Function that operate on a LinkedList were not really tied to the

linked list structure

• We passed a linked list to a function, rather than invoking a

method on a linked list instance

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C++

❖ A major addition is support for classes and objects!

27

▪ Classes

• Public, private, and protectedmethods and instance variables

• (multiple!) inheritance

▪ Polymorphism

• Static polymorphism: multiple functions or methods with the same

name, but different argument types (overloading)

– Works for all functions, not just class members

• Dynamic (subtype) polymorphism: derived classes can override

methods of parents, and methods will be dispatched correctly

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C

❖ We had to emulate generic data structures

▪ Generic linked list using void* payload

▪ Pass function pointers to generalize different “methods” for data

structures

• Comparisons, deallocation, pickling up state, etc.

28

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C++

❖ Supports templates to facilitate generic data types

▪ Parametric polymorphism – same idea as Java generics, but

different in details, particularly implementation

29

▪ To declare that x is a vector of ints: vector<int> x;

▪ To declare that x is a vector of strings: vector<string> x;

▪ To declare that x is a vector of [vectors of floats]:

vector<vector<float>> x;

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C

❖ We had to be careful about namespace collisions

30

▪ We used naming conventions to help avoid collisions in the global

namespace

• e.g. LLIteratorNext vs. HTIteratorNext, etc.

▪ C distinguishes between external and internal linkage

• Use static to prevent a name from being visible outside a source

file (as close as C gets to “private”)

• Otherwise, name is global and visible everywhere

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C++

❖ Permits a module to define its own namespace!

▪ The linked list module could define an “LL” namespace while the

hash table module could define an “HT” namespace

31

❖ Classes also allow duplicate names without collisions

▪ Namespaces group and isolate names in collections of classes and

other “global” things (somewhat like Java packages)

▪ Both modules could define an Iterator class

• One would be globally named LL::Iterator

• The other would be globally named HT::Iterator

▪ Entire C++ standard library is in a namespace std (more later…)

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C

❖ C does not provide any standard data structures

32

▪ We had to implement our own linked list and hash table

▪ As a C programmer, you often reinvent the wheel… poorly

• Maybe if you’re clever you’ll use somebody else’s libraries

• But C’s lack of abstraction, encapsulation, and generics means you’ll

probably end up tinkering with them or tweak your code to use them

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C++

❖ The C++ standard library is huge!

33

▪ Generic containers: bitset, queue, list, associative array (including

hash table), deque, set, stack, and vector

• And iterators for most of these

▪ A string class: hides the implementation of strings

▪ Streams: allows you to stream data to and from objects, consoles,

files, strings, and so on

▪ And more…

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C

❖ Error handling is a pain

▪ Have to define error codes and return them

34

▪ Customers have to understand error code conventions and need

to constantly test return values

▪ e.g. if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C++

❖ Error handling is STILL a pain, but now we have exceptions

▪ try / throw / catch

35

▪ If used with discipline, can simplify error processing

• But, if used carelessly, can complicate memory management

• Consider: a() calls b(), which calls c()
– If c() throws an exception that b() doesn’t catch, you might not get a

chance to clean up resources allocated inside b()

▪ But much C++ code still needs to work with C & old C++ libraries

that are not exception-safe, so still uses return codes, exit(), etc.

• We won’t use (and Google style guide doesn’t use either)

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Some Tasks Still Hurt in C++

❖ Memory management

▪ C++ has no garbage collector

• You have to manage memory allocation and deallocation and track

ownership of memory

• It’s still possible to have leaks, double frees, and so on

36

▪ But there are some things that help

• “Smart pointers”

– Classes that encapsulate pointers and track reference counts

– Deallocate memory when the reference count goes to zero

• C++’s destructors permit a pattern known as “Resource Allocation Is

Initialization” (RAII) (terrible name but super useful idea)

– Useful for releasing memory, locks, database transactions, and more

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Some Tasks Still Hurt in C++

❖ C++ doesn’t guarantee type or memory safety

▪ You can still:

• Forcibly cast pointers between incompatible types

• Walk off the end of an array and smash memory

• Have dangling pointers

• Conjure up a pointer to an arbitrary address of your choosing

37

CSE333, Summer 2025L08: Syscall Details, C++ Intro

C++ Has Many, Many Features

❖ Operator overloading

▪ Your class can define methods for handling “+”, “->”, etc.

38

❖ Object constructors, destructors

▪ Particularly handy for stack-allocated objects

❖ Reference types

▪ True call-by-reference instead of always call-by-value

❖ Advanced Objects

▪ Multiple inheritance, virtual base classes, dynamic dispatch

CSE333, Summer 2025L08: Syscall Details, C++ Intro

How to Think About C++

39

Set of styles
and ways to
use C++

Set of styles
and ways to

use C

Good styles
and robust
engineering
practices

Style
guides

CSE333, Summer 2025L08: Syscall Details, C++ Intro

Or…

40

In the hands of a disciplined
programmer, C++ is a

powerful tool

But if you’re not so
disciplined about how you

use C++…

CSE333, Summer 2025L08: Syscall Details, C++ Intro

To do

41

❖ Exercise 8 is posted this morning, but not due until

Wednesday

❖ Homework 2 starter code is being pushed by tonight,
take a look!

