
CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Low-Level I/O & System Calls Intro
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Administrivia

❖ Exercise 6 was due this morning

❖ Exercise 7 is out tomorrow, due on Friday
▪ You’ll cover some of it in sections tomorrow

2

❖ Today, we cover the materials for Exercise 7:

▪ POSIX I/O for directories and reading data from files

▪ Read a directory and open/copy text files found there

• Copy exactly and only the bytes in the file(s). No extra output, no

“formatting”, no “titles”, no other transformations.



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Administrivia

❖ Homework 1 due on Tomorrow @ at 11pm

3



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

❖ What are two pieces of functionality that the OS provides

to processes that run on it?

5

▪ File System
▪ Network Abstraction
▪ Virtual Memory

▪ Process Management

▪ Portability



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

POSIX (Portable Operating System
Interface)
❖ Standards for Unix-like operating system interfaces

❖ Maintained by the IEEE

❖ Allows more code to be portable across OS’s

❖ Mostly handling:

➢ I/O (including from files, terminals, and the network)

➢ Threading



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Remember This Picture?

❖ Your program can access many

layers of APIs:

7

architecture-independent code

architecture-dependent code

glibc

C standard
library

POSIX

Linux
system calls

Linux kernel

Your program

▪ C standard library

• Some are just ordinary functions

(<string.h>, for example)

• Some also call OS-level (POSIX)

functions (<stdio.h>, for example)

▪ POSIX compatibility API

• C-language interface to OS system

calls (fork(), read(), etc.)

▪ Underlying OS system calls

• Assembly language



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

What’s Tricky about (POSIX) File I/O?

❖ Communication with input and output devices doesn’t always

work as expected
■ May not process all data or fail, necessitating read/write loops

❖ Different system calls have a variety of different failure
modes and error codes
■ Look up in the documentation and use pre-defined constants!
■ Lots of error-checking code needed

● Need to handle resource cleanup on every termination pathway



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Why use POSIX File I/O?

❖ Same tasks on files can be accomplished with the C standard

library API

❖ But they’re often implemented in terms of POSIX
operations
■ Helpful to understand how things work at a lower level
■ Can be more efficient to use the POSIX APIs
■ Generalizes beyond files (network, directories, etc).



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Lecture Outline

❖ Reading and Writing Files

❖ Reading and Writing Directories

❖ System Calls Introduction

10



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

C Standard Library File I/O

❖ So far you’ve used the C standard library to access files

▪ Use a provided FILE* stream abstraction

▪ fopen(), fread(), fwrite(), fclose(), fseek()

11

❖ These are convenient and portable

▪ They are buffered

▪ They are implemented using lower-level OS calls



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Lower-Level File Access

❖ Most UNIX-en support a common set of lower-level file

access APIs: POSIX – Portable Operating System Interface

▪ open(), read(), write(), close(), lseek()

12

▪ We will have to use these to read file system directories and for

network I/O, so we might as well learn them now

• Similar in spirit to their f*() counterparts from C std lib

• Lower-level and unbuffered compared to their counterparts

• Also less convenient



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

open()/close()

❖ To open a file:

▪ Pass in the filename and access mode

• Similar to fopen()

13

#include <fcntl.h> // for open()
#include <unistd.h> // for close()
...
int fd = open("foo.txt", O_RDONLY);
if (fd == -1) {
perror("open failed");
exit(EXIT_FAILURE);

}
...
close(fd);

▪ Get back a “file descriptor”

• Similar to FILE* from fopen(), but is just an int

• Defaults: 0 is stdin, 1 is stdout, 2 is stderr

Many kinds of flags!
See the man page
for reference



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Reading from a File

❖ ssize_t read(int fd, void* buf, size_t count);

▪ Returns the number of bytes read

• Might be fewer bytes than you requested (!!!)

• Returns 0 if you’re already at the end-of-file

• Returns -1 on error

ssize_t read(int fd, void* buf, size_t count);

14

▪ read has some surprising error modes…

ssize_t is a
signed version of

size_t



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Read error modes

❖ ssize_t read(int fd, void* buf, size_t count);

▪ On error, read returns -1 and sets the global errno variable

ssize_t read(int fd, void* buf, size_t count);

15

▪ You need to check errno to see what kind of error happened

• EBADF: bad file descriptor

• EFAULT: output buffer is not a valid address

• EINTR: read was interrupted, please try again (ARGH!!!! )

• And many others…



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

I/O Analogy – Messy Roommate

16

● The Linux kernel (Tux) now lives with you
in room #333

● There are N pieces of trash in the room

● There is a single trash can, char bin[N]
○ (For some reason, the trash goes in a particular order)

● You can tell your roommate to pick it up, but they are
unreliable



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

I/O Analogy – Messy Roommate

num_trash = Pickup(room_num, trash_bin, amount)

“I tried to start cleaning, but something came up”
(got hungry, had a midterm, room was locked, etc.)

num_trash == -1
errno == excuse

“You told me to pick up trash, but the room was
already clean”

num_trash == 0

“I picked up some of it, but then I got distracted by
my favorite show on Netflix”

num_trash < amount

“I did it! I picked up all the trash!” num_trash == amount

17



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

bin[0]

bin[N-1]
I have to study
for cse333! I’ll
do it later.

Decide if the
excuse is
reasonable,
and either
let it be or
ask again.

19

How do we get the room clean?
num_trash == -1,
errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

num_trash = Pickup(room_num, trash_bin, amount)



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

bin[0]

bin[N-1]
The room is
already clean,
dawg!

Stop asking
them to clean
the room!
There’s
nothing to do.

20

How do we get the room clean?
num_trash == -1,
errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

num_trash = Pickup(room_num, trash_bin, amount)



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

bin[0]

bin[N-1]
Ask them
again to pick
up the rest
of it.

I picked up 3
whole pieces of
trash! What
more do you
want from me?

21

How do we get the room clean?
num_trash == -1,
errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

num_trash = Pickup(room_num, trash_bin, amount)



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

bin[0]

bin[N-1]
They did
what you
asked, so
stop asking
them to pick
up trash.

I did it! The
whole room
is finally
clean.

22

How do we get the room clean?
num_trash == -1,
errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

num_trash = Pickup(room_num, trash_bin, amount)



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Not fully
comprehensive, please
refer to the man pages



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

25

int fd = open(filename, O_RDONLY);
char* buf = ...; // buffer of at least size n
int bytes_left = n;
int result;

while (bytes_left > 0) {
result = read(fd, buf + (n - bytes_left), bytes_left);
if (result == -1) {
if (errno != EINTR) {
// a real error happened, so return an error result

}
// EINTR happened, so do nothing and try again
continue;

} else if (result == 0) {
// EOF reached, so stop reading
break;

}
bytes_left -= result;

}

close(fd);

readN.c



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Other Low-Level Functions

❖ Read man pages to learn more about POSIX I/O:

▪ write() – write data

▪ fsync() – flush data to the underlying device

• Make sure you read the section 3 version (e.g. man 3 fsync)

❖ A useful shortcut sheet (from CMU):
http://www.cs.cmu.edu/~guna/15-123S11/Lectures/Lecture24.pdf

26



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Lecture Outline

❖ Reading and Writing Files

❖ Reading and Writing Directories

❖ System Calls Introduction

27



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Directories

❖ A directory is a special file that stores the names and locations

of the related files/directories

❖ Accessible via POSIX (dirent.h in C/C++)

■ Basic operation is listing files/directories in a directory

■ This includes itself (.), its parent directory (..), and all of its children
(i.e., the directory's contents)

■ Take CSE 451 to learn more about the directory structure



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

POSIX Directory Basics

❖ Basic operations a lot like reading files

▪ opendir() - Open a directory for reading

▪ readdir() - Read the contents of a directory

▪ closedir() - Close a directory when you’re done

❖ Like C standard file I/O, but instead of FILE *, these use DIR *

■ opendir() returns a DIR *

■ readdir() and closedir() take a DIR *

❖ Instead of file bytes, reading a directory returns a

struct dirent
■ describes a directory entry



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Full Prototypes

❖ DIR *opendir(const char *name);

❖ struct dirent *readdir(DIR *dirp);

❖ int closedir(DIR *dirp);

30

Return NULL pointers
when they fail, and set

errnoReturn -1 when it
fails, and sets errno



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Using readdir()

❖ The DIR * has state; it changes each time you read it.

❖ Each read returns one file or subdirectory, moves the DIR *

to the next one

31

❖ After all directory contents have been read, returns NULL
➢ Doesn’t change errno if it’s just the end of the directory



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

readdir() Example

DIR *dirp = opendir("~/tiny_dir");

struct dirent *file = readdir(dirp);

file = readdir(dirp);

file = readdir(dirp);

file = readdir(dirp);

closedir(dirp);

~/tiny_dir/
hi.txt...

internal dir ptr:

// opens directory

// gets ptr to "."

// gets ptr to ".."

// gets ptr to "hi.txt"

// gets NULL

// clean up



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

struct dirent

❖ Returned value from readdir
❖ Fields are “unspecified” (depends on your operating system)

directory entry
metadata stored
in integer types}

❖ Does not need to be “freed” or “closed”

struct dirent {
ino_t d_ino;
off_t d_off;
unsigned short d_reclen;
unsigned char d_type;
char d_name[256];

};

■ glibc specifies:

Null-terminated directory entry
name (what we care about in 333)



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Lecture Outline

❖ Reading and Writing Files

❖ Reading and Writing Directories

❖ System Calls Introduction

34



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

OS: Protection System

❖ OS isolates process from each other

▪ But permits controlled sharing between them

• Through shared name spaces (e.g. file names)

35

OS
(trusted)

HW (trusted)

P
ro
ce
ss
A

(u
n
tr
u
st
ed

)

P
ro
ce
ss
B

(u
n
tr
u
st
ed

)

P
ro
ce
ss
C

(u
n
tr
u
st
ed

)

P
ro
ce
ss
D

(t
ru
st
ed

)

Linux kernel

Your program

❖ OS isolates itself from processes

▪ Must prevent processes from accessing the

hardware directly



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

OS: Protection System

❖ The hardware has two important

mechanisms to support OS functionality:

36

OS
(trusted)

HW (trusted)

P
ro
ce
ss
A

(u
n
tr
u
st
ed

)

P
ro
ce
ss
B

(u
n
tr
u
st
ed

)

P
ro
ce
ss
C

(u
n
tr
u
st
ed

)

P
ro
ce
ss
D

(t
ru
st
ed

)

Linux kernel

Your program

❖ Privileged Mode

▪ Allows running special instructions that

access the hardware directly

❖ Interrupts

▪ Can be triggered by many kinds of

events:

• Timers, keypresses, etc.

▪ Immediately causes the processor to

jump to a pre-defined location, turns

on privileged mode.



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

OS: Protection System

37

OS
(trusted)

HW (trusted)

P
ro
ce
ss
A

(u
n
tr
u
st
ed

)

P
ro
ce
ss
B

(u
n
tr
u
st
ed

)

P
ro
ce
ss
C

(u
n
tr
u
st
ed

)

P
ro
ce
ss
D

(t
ru
st
ed

)

Linux kernel

Your program
❖ User-level processes run with the CPU (processor)

in unprivileged mode

❖ The OS runs with the CPU in privileged mode

❖ User-level processes invoke system calls by

triggering an interrupt to safely enter the OS



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

System Call Trace

38

OS
(trusted)

HW (trusted)
P
ro
ce
ss
A

(u
n
tr
u
st
ed

)

P
ro
ce
ss
B

(u
n
tr
u
st
ed

)

P
ro
ce
ss
C

(u
n
tr
u
st
ed

)

P
ro
ce
ss
D

(t
ru
st
ed

)

A CPU (thread of execution)
is running user-level code in
Process A; the CPU is set to

unprivileged mode.

Linux kernel

Your program



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

OS
(trusted)

HW (trusted)
P
ro
ce
ss
A

(u
n
tr
u
st
ed

)

P
ro
ce
ss
B

(u
n
tr
u
st
ed

)

P
ro
ce
ss
C

(u
n
tr
u
st
ed

)

P
ro
ce
ss
D

(t
ru
st
ed

)

System Call Trace

39

Code in Process A invokes a
system call; the hardware then:

(1) Sets the CPU to
privileged mode

(2) Traps into the OS, which
invokes the appropriate system

call handler.

sy
st
em

ca
ll

Linux kernel

Your program



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

OS
(trusted)

HW (trusted)
P
ro
ce
ss
A

(u
n
tr
u
st
ed

)

P
ro
ce
ss
B

(u
n
tr
u
st
ed

)

P
ro
ce
ss
C

(u
n
tr
u
st
ed

)

P
ro
ce
ss
D

(t
ru
st
ed

)

System Call Trace

40

Because the CPU executing
the thread that’s in the OS is
in privileged mode, it is able
to use privileged instructions
that interact directly with
hardware devices like disks.

Linux kernel

Your program



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

OS
(trusted)

HW (trusted)
P
ro
ce
ss
A

(u
n
tr
u
st
ed

)

P
ro
ce
ss
B

(u
n
tr
u
st
ed

)

P
ro
ce
ss
C

(u
n
tr
u
st
ed

)

P
ro
ce
ss
D

(t
ru
st
ed

)

System Call Trace

41

sy
st
em

ca
ll
re
tu
rn

Once the OS has finished
servicing the system call,

which might involve long waits
as it interacts with HW, it:

(1) Sets the CPU back to
unprivileged mode and

(2) Returns out of the system
call back to the user-level code

in Process A.

Linux kernel

Your program



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

OS
(trusted)

HW (trusted)
P
ro
ce
ss
A

(u
n
tr
u
st
ed

)

P
ro
ce
ss
B

(u
n
tr
u
st
ed

)

P
ro
ce
ss
C

(u
n
tr
u
st
ed

)

P
ro
ce
ss
D

(t
ru
st
ed

)

System Call Trace

42

The process continues
executing whatever
code is next after the
system call invocation.

Useful reference:
CSPP § 8.1–8.3
(the 351 book) Linux kernel

Your program



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

To do:

43

❖ HW1 due on Tomorrow @ 11pm

❖ Exercise 7 due Friday, but not out until tomorrow



CSE333, Summer 2025L07: Low-Level I/O (POSIX), Syscall Intro

Extra Exercise #1

❖ Write a program that:

▪ Loops forever; in each loop:

• Prompt the user to

input a filename

• Reads a filename

from stdin

• Opens and reads

the file

• Prints its contents

to stdout in the format shown:

❖ Hints:

▪ Use man to read about fgets

▪ Or, if you’re more courageous, try man 3 readline to learn about

libreadline.a and Google to learn how to link to it
44

00000000 50 4b 03 04 14 00 00 00 00 00 9c 45 26 3c f1 d5
00000010 68 95 25 1b 00 00 25 1b 00 00 0d 00 00 00 43 53
00000020 45 6c 6f 67 6f 2d 31 2e 70 6e 67 89 50 4e 47 0d
00000030 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 91 00
00000040 00 00 91 08 06 00 00 00 c3 d8 5a 23 00 00 00 09
00000050 70 48 59 73 00 00 0b 13 00 00 0b 13 01 00 9a 9c
00000060 18 00 00 0a 4f 69 43 43 50 50 68 6f 74 6f 73 68
00000070 6f 70 20 49 43 43 20 70 72 6f 66 69 6c 65 00 00
00000080 78 da 9d 53 67 54 53 e9 16 3d f7 de f4 42 4b 88
00000090 80 94 4b 6f 52 15 08 20 52 42 8b 80 14 91 26 2a
000000a0 21 09 10 4a 88 21 a1 d9 15 51 c1 11 45 45 04 1b
... etc ...


