
CSE333, Summer 2025L06: C Details

C Details, File I/O, and System Calls
CSE 333

Instructor:Alex Sanchez-Stern

Teaching Assistants:

Audrey Seo
Deeksha Vatwani
Derek de Leuw
Katie Gilchrist

CSE333, Summer 2025L06: C Details

Administrivia

❖ Exercise 5 due this morning
▪ Reminder: there is no exercise 4, we’re skipping it this quarter.

❖ New exercise (ex6) posted today, due Wednesday morning

❖ HW1 due on Thursday @ 11pm

2

❖ HW0 grades are posted!
▪ Regrade requests can be done on gradescope

▪ Questions about your grade can go in private edboard messages.

CSE333, Summer 2025L06: C Details

Lecture Outline

❖ Final C Details

❖ File I/O with the C standard library

❖ OS Abstraction

3

CSE333, Summer 2025L06: C Details

C Preprocessor Example

❖ We can manually run the preprocessor:

▪ cpp is the preprocessor (can also use gcc -E)

▪ “-P” option suppresses some extra debugging annotations

5

#define BAR 2 + FOO

typedef long long int verylong;

#define FOO 1

#include "cpp_example.h"

int main(int argc, char** argv) {
int x = FOO; // a comment
int y = BAR;
verylong z = FOO + BAR;
return 0;

}

cpp_example.c

cpp_example.h
bash$ cpp –P cpp_example.c out.cbash$ cpp –P cpp_example.c out.c
bash$ cat out.c

typedef long long int verylong;
int main(int argc, char **argv) {
int x = 1;
int y = 2 + 1;
verylong z = 1 + 2 + 1;
return 0;

}

CSE333, Summer 2025L06: C Details

What Is gcc Really Doing?

❖ gcc runs other programs that do the "real work"

❖ Here’s what gcc runs to translate foo.c to foo.o
▪ gcc -c foo.c

6

foo.c cpp foo.i cc1 foo.o

Preprocessor (cpp):
• Copies input to output
• Executes #directives

(#include, #define, etc.)

Plain C code!
• No #directives

remaining
• Can create actual .i file

with gcc -E; (usually
not needed)

The “real” compiler (cc1)
• Translates plain C code

to machine code

CSE333, Summer 2025L06: C Details

Other Preprocessor Tricks

❖ A way to deal with “magic numbers” (constants)

int globalbuffer[1000];

void circalc(float rad,
float* circumf,
float* area) {

*circumf = rad * 2.0 * 3.1415;
*area = rad * 3.1415 * 3.1415;

}

#define BUFSIZE 1000
#define PI 3.14159265359

int globalbuffer[BUFSIZE];

void circalc(float rad,
float* circumf,
float* area) {

*circumf = rad * 2.0 * PI;
*area = rad * PI * PI;

}

Bad code
(littered with magic constants)

Better code

7

CSE333, Summer 2025L06: C Details

Macros
❖ #define definitions can take arguments;

these are called “macros”:
#define ODD(x) ((x) % 2 != 0)

void foo() {
if (ODD(5))
printf("5 is odd!\n");

}

void foo() {
if (((5) % 2 != 0))
printf("5 is odd!\n");

}

cpp

#define ODD(x) ((x) % 2 != 0)
#define WEIRD(x) x % 2 != 0

ODD(5 + 1);

WEIRD(5 + 1);

((5 + 1) % 2 != 0);

5 + 1 % 2 != 0;

cpp

8

❖ Beware of operator precedence issues!

▪ Use parentheses

()

CSE333, Summer 2025L06: C Details

Conditional Compilation

❖ You can change what gets compiled

▪ In this example, #define TRACE before #ifdef to include

debug printfs in compiled code

#ifdef TRACE
#define ENTER(f) printf("Entering %s\n", f)
#define EXIT(f) printf("Exiting %s\n", f)
#else
#define ENTER(f)
#define EXIT(f)
#endif

// print n
void pr(int n) {
ENTER("pr");
printf("\n = %d\n", n);
EXIT("pr");

}

ifdef.c
9

You can give macros
blank definitions to
make them do

nothing

CSE333, Summer 2025L06: C Details

Defining Symbols

❖ Besides #defines in the code, preprocessor values can
be given as part of the gcc command:

bash$ gcc -Wall -g -DTRACE -o ifdef ifdef.c

bash$ gcc -Wall -g -DNDEBUG -o faster useassert.c

10

❖ assert can be controlled the same way – defining

NDEBUG causes assert to expand to “empty”

▪ It’s a macro – see assert.h

CSE333, Summer 2025L06: C Details

12

bash$ gcc -Wall -DBAR –DFOO -o condcomp condcomp.c
bash$./condcomp

#include <stdio.h>

#define EVEN(x) !((x)%2)

#define BAZ 333

int main(int argc, char** argv) {
int i = EVEN(42) + BAZ;
printf("%d\n",i);
return EXIT_SUCCESS;

}

#ifdef FOO

#endif
#ifndef DBAR

#endif

CSE333, Summer 2025L06: C Details

13

bash$ gcc -Wall -DBAR –DFOO -o condcomp condcomp.c
bash$./condcomp

#include <stdio.h>

#define EVEN(x) !((x)%2)

#define BAZ 333

int main(int argc, char** argv) {
int i = EVEN(42) + BAZ;
printf("%d\n",i);
return EXIT_SUCCESS;

}

#ifdef FOO

#endif
#ifndef DBAR

#endif

CSE333, Summer 2025L06: C Details

14

bash$ gcc -Wall -DBAR –DFOO -o condcomp condcomp.c
bash$./condcomp

#include <stdio.h>

#define EVEN(x) !((x)%2)

#define BAZ 333

int main(int argc, char** argv) {
int i = EVEN(42) + BAZ;
printf("%d\n",i);
return EXIT_SUCCESS;

}

#ifndef DBAR

#endif

CSE333, Summer 2025L06: C Details

15

bash$ gcc -Wall -DBAR –DFOO -o condcomp condcomp.c
bash$./condcomp

#include <stdio.h>

#define EVEN(x) !((x)%2)

#define BAZ 333

int main(int argc, char** argv) {
int i = EVEN(42) + BAZ;
printf("%d\n",i);
return EXIT_SUCCESS;

}

!((42)%2) + 333;

42%2 = 0
!0 = 1

1 + 333 = 334
Final Output: 334

CSE333, Summer 2025L06: C Details

Additional C Topics

❖ Teach yourself!

16

▪ String library functions in the C standard library

• #include <string.h>
– strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(),…

• #include <stdlib.h> or #include <stdio.h>
– atoi(), atof(), sprint(), sscanf()

▪ unions and what they are good for
▪ enums and what they are good for
▪ Pre- and post-increment/decrement

▪ How to declare, define, and use a function that accepts a

variable-number of arguments (varargs)

▪ Harder: the meaning of the “volatile” storage class

CSE333, Summer 2025L06: C Details

Lecture Outline

❖ Final C Details

❖ File I/O with the C standard library

❖ OS Abstraction

17

CSE333, Summer 2025L06: C Details

Remember This Picture?

18

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Summer 2025L06: C Details

File I/O
❖ We’ll start by using C’s standard library

▪ These functions are part of glibc on Linux

▪ They are implemented using Linux system calls

19

❖ C’s stdio defines the notion of a stream

▪ A way of reading or writing a sequence of characters to and from a

device

▪ Three streams provided by default: stdin, stdout, stderr

• You can open additional streams to read and write to files

▪ Can be either text or binary; Linux does not distinguish

CSE333, Summer 2025L06: C Details

C Stream Functions

❖ FILE*
▪ Opens a stream to the specified file in the specified access mode

▪ Returns NULL if it fails

20

FILE* fopen(char* filename, char* mode);

❖ int
▪ Closes the specified stream (file)

▪ Returns non-zero if it fails

▪ But you can often assume it succeeds

int fclose(FILE* stream);

❖ In the C Stream API, files are represented by a special

pointer FILE*

CSE333, Summer 2025L06: C Details

C Stream Access Modes

21

❖ File access modes in the C Stream API are represented by

strings (char*)

❖ Three main modes you should know about:
▪ “r” - reading from the beginning of the file

▪ “w” - writing - if the file already exists, overwrite it completely

▪ “a” - appending - create the file if it doesn’t exist, then write to

the end.

CSE333, Summer 2025L06: C Details

Printing Errors

22

▪ void perror(message);

• Prints message and error message related to errno to stderr

void perror(message);

A global variable that
some library

functions set to
indicate an error

❖ If your file operations fail, use perror to print the exact

error message

CSE333, Summer 2025L06: C Details

C Streams Example, Part 1

23

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
FILE *fin, *fout;
char readbuf[READBUFSIZE]; // space for input data
size_t readlen;

// We’ll handle wrong-number-of-arguments in a second

// Open the input file
fin = fopen(argv[1], "r"); // "r" -> read
if (fin == NULL) {
perror("fopen for read failed");
return EXIT_FAILURE;

}
...

cp_example.c

CSE333, Summer 2025L06: C Details

❖

▪ Write an array of count elements of size bytes from ptr to stream

❖

▪ Reads an array of count elements of size bytes from stream to ptr

▪ Returns the number of elements actually read

Using C Streams: Reading and Writing

24

size_t fwrite(void* ptr, size_t size, size_t count, FILE* stream);

size_t fread(void* ptr, size_t size, size_t count, FILE* stream);

▪ size is only a request; returns the number of elements actually written

❖ In this class, we’ll just be writing text data, so:

▪ ptr is always a char*

▪ size is always 1 (same as sizeof(char))

▪ count in fwrite is always strlen(ptr)

CSE333, Summer 2025L06: C Details

❖ Stream objects change when you read or write them

Using C Streams: Reading and Writing

25

❖ Each file stream holds a file position that it exists at

(except stdin/stdout/stderr)

❖ When you read or write, you move the position

❖ If you open a new stream, the position resets (except with

‘a’ mode)

CSE333, Summer 2025L06: C Details

▪ int fscanf(stream, format, ...);

• Reads data and stores data matching the format string

• The inverse of fprintf

C Stream Functions

❖ Formatted I/O stream functions:

▪ int fprintf(stream, format, ...);

• Writes a formatted C string

– printf(...); is equivalent to fprintf(stdout, ...);

26

int fprintf(FILE* stream, char* format, ...);

int fscanf(FILE* stream, char* format, ...);

CSE333, Summer 2025L06: C Details

▪ void clearerr(stream);

• Resets error and eof indicators for the specified stream

▪ int ferror(stream);

• Checks if the error indicator associated with the specified stream is set

Error Checking/Handling

❖ Each stream has its own error indicator

27

int ferror(FILE* stream);

int clearerr(FILE* stream);

More I/O functions in stdio.h,
see cppreference.com

CSE333, Summer 2025L06: C Details

C Streams Example

28

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define READBUFSIZE 128

int main(int argc, char** argv) {
FILE *fin, *fout;
char readbuf[READBUFSIZE]; // space for input data
size_t readlen;

if (argc != 3) {
fprintf(stderr, "usage: ./cp_example infile outfile\n");
return EXIT_FAILURE; // defined in stdlib.h

}

// Open the input file
fin = fopen(argv[1], "rb"); // "rb" -> read, binary mode
if (fin == NULL) {
fprintf(stderr, "%s -- ", argv[1]);
perror("fopen for read failed");
return EXIT_FAILURE;

}
...

cp_example.c

CSE333, Summer 2025L06: C Details

C Streams Example

29

int main(int argc, char** argv) {

... // previous slide’s code

// Open the output file
fout = fopen(argv[2], "wb"); // "wb" -> write, binary mode
if (fout == NULL) {
fprintf(stderr, "%s -- ", argv[2]);
perror("fopen for write failed");
return EXIT_FAILURE;

}

// Read from the file, write to fout
while ((readlen = fread(readbuf, 1, READBUFSIZE, fin)) > 0) {
if (fwrite(readbuf, 1, readlen, fout) < readlen) {
perror("fwrite failed");
return EXIT_FAILURE;

}
}

... // next slide’s code

}

cp_example.c

CSE333, Summer 2025L06: C Details

C Streams Example

30

int main(int argc, char** argv) {

... // code from previous 2 slides

// Test to see if we encountered an error while reading
if (ferror(fin)) {
perror("fread failed");
return EXIT_FAILURE;

}

fclose(fin);
fclose(fout);

return EXIT_SUCCESS;
}

cp_example.c

CSE333, Summer 2025L06: C Details

Buffering

❖ By default, stdio uses buffering for streams:

31

▪ Data written by fwrite() is copied into a buffer allocated by

stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

CSE333, Summer 2025L06: C Details

Buffering

❖ By default, stdio uses buffering for streams:

▪ Data written by fwrite() is copied into a buffer allocated by

stdio inside your process’ address space

▪ As some point, the buffer will be “drained” into the destination:

32

• When you explicitly call fflush() on the stream

• When the buffer size is exceeded (often 1024 or 4096 bytes)

• For stdout to console, when a newline is written (“line buffered”) or

when some other function tries to read from the console

• When you call fclose() on the stream

• When your process exits gracefully (exit() or return from

main())

CSE333, Summer 2025L06: C Details

Why Buffer?

❖ Performance – avoid disk accesses

▪ Group many small writes into a single larger write

▪ Why minimize the number of writes? Disk Latency =

33

❖ Convenience – nicer API

▪ We’ll compare C’s fread() with POSIX’s read() shortly

CSE333, Summer 2025L06: C Details

Why Buffer?

❖ Disk Latency = (Jeff Dean from LADIS ’09)

34

CSE333, Summer 2025L06: C Details

Why NOT Buffer?

❖ Reliability – the buffer needs to be flushed

▪ Loss of computer power = loss of data

▪ “Completion” of a write (i.e. return from fwrite()) does not
mean the data has actually been written

• What if you signal another process to read the file you just wrote to?

35

❖ Performance – buffering takes time

▪ Copying data into the stdio buffer consumes CPU cycles and

memory bandwidth

▪ Can potentially slow down high-performance applications, like a web

server or database (“zero-copy”)

CSE333, Summer 2025L06: C Details

Disabling C’s Buffering

❖ Explicitly turn off with setbuf(stream, NULL)
▪ But potential performance problems: lots of small writes triggers

lots of slower system calls instead of a single system call that

writes a large chunk

36

❖ Use POSIX APIs instead of C’s

▪ No buffering is done at the user level

▪ We’ll see these soon

CSE333, Summer 2025L06: C Details

pollev.com/uwcse33343aF

❖ Can you think of any other places where buffering might

occur?

37

CSE333, Summer 2025L06: C Details

38

❖ Can you think of any other places where buffering might

occur?

❖ The OS caches disk reads and writes in the file system buffer cache

❖ Disk controllers have caches too!

❖ Input from the user is buffered by the shell

CSE333, Summer 2025L06: C Details

Lecture Outline

❖ Final C Details

❖ File I/O with the C standard library

❖ OS Abstraction

39

CSE333, Summer 2025L06: C Details

What’s an OS?

40

C application

C standard
library (glibc)

C++ STL/boost/
standard library

C++ application Java application

JRE

CPU memory storage network
GPU clock audio radio peripherals

HW/SW interface
(x86 + devices)

OS / app interface
(system calls)

operating system

hardware

CSE333, Summer 2025L06: C Details

What’s an OS?

❖ Software that:

▪ Abstracts away messy hardware devices

• Provides high-level, convenient, portable abstractions

(e.g. files, disk blocks)

41

▪ Directly interacts with the hardware

• OS is trusted to do so; user-level programs are not

• OS must be ported to new hardware; user-level programs are portable

▪ Manages (allocates, schedules, protects) hardware resources

• Decides which programs can access which files, memory locations,

pixels on the screen, etc. and when

CSE333, Summer 2025L06: C Details

OS: Abstraction Provider

❖ The OS is the “layer below”

▪ A module that your program can call (with system calls)

▪ Provides a powerful OS API – POSIX, Windows, etc.

42

a process running
your program

OS

OS
API

File System
• open(), read(), write(), close(),…

Network Stack
• connect(), listen(), read(), write(), ...

Virtual Memory
• brk(), shm_open(),…

Process Management
• fork(), wait(), nice(),…fi

le
sy
st
em

n
et
w
o
rk

st
ac
k

vi
rt
u
al
m
em

o
ry

p
ro
ce
ss

m
gm

t.

…
et
c
…

CSE333, Summer 2025L06: C Details

44

0xFFFFFFFF

0x00000000

Stack

Heap (malloc/free)

Read/Write Segment
.data, .bss

Read-Only Segment
.text, .rodata

Shared Libraries
But not in physical
memory exclusively

owned by the
process!

❖ Where does shared code, such as strcmp(),

live in memory?

CSE333, Summer 2025L06: C Details

To do:

45

❖ New exercise (ex6) posted today, due Wednesday morning

❖ HW1 due on Thursday @ 11pm

CSE333, Summer 2025L06: C Details

Extra Exercise #1

❖ Write a program that:

▪ Prompts the user to input a string (use fgets())

• Assume the string is a sequence of whitespace-separated integers

(e.g. "5555 1234 4 5543")

▪ Converts the string into an array of integers

▪ Converts an array of integers into an array of strings

• Where each element of the string array is the binary representation of

the associated integer

▪ Prints out the array of strings

46

CSE333, Summer 2025L06: C Details

Extra Exercise #2

❖ Write a program that:

▪ Uses argc/argv to receive the name of a text file

▪ Reads the contents of the file a line at a time

▪ Parses each line, converting text into a uint32_t

▪ Builds an array of the parsed uint32_t’s

▪ Sorts the array

▪ Prints the sorted array to stdout

❖ Hint: use man to read about

getline, sscanf, realloc,
and qsort

47

bash$ cat in.txt
1213
3231
000005
52
bash$./extra1 in.txt
5
52
1213
3231
bash$

