CSE333, Summer 2025

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

Intro, C refresher
CSE 333

Instructor: Alex Sanchez-Stern (he/him)

Teaching Assistants:
Audrey Seo (they/them)

Deeksha Vatwani (she/her)
Derek de Leuw (he/him)
Katie Gilchrist (she/her)

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Lecture Outline

¢ Course Introduction
« Course Policies

= https://courses.cs.washington.edu/courses/cse333/25su/syllabus.html

s Clintro

https://courses.cs.washington.edu/courses/cse333/25su/syllabus.html

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Introductions: Course Staff

« Instructor: Alex Sanchez-Stern (asnchstr@cs)

< 4 TAs:
= Audrey Seo, Deeksha Vatwani, Derek de Leuw, Katie Gilchrist

= Available in section, office hours, and on the ed board

= An invaluable source of information and help

+ Get to know us

= \We are here to help you succeed!

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Communication

+ Website: http://cs.uw.edu/333

= Schedule, policies, materials, assignments, etc.

«» Office Hours: spread throughout the week, available on
the class calendar

« One-on-ones: by appointment
= Send us a message with your availability in the next 3 days

= Do not expect a response in less than 24 hours!

http://cs.uw.edu/333

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Communication

« Discussion: Ed group linked to course home page
= Ask and answer questions — staff will monitor and contribute

= Use private messages for questions about detailed code, etc.

« Announcements: will use broadcast Ed messages to send
“things everyone must read and know”

+» Messages to staff: things unsuitable for Ed board or
Gradescope regrade requests
* Please send email to cse333-staff@cs.uw.edu. Reaches all staff so

the right person can help out quickly, and helps follow up until
resolved

= (don’t email to instructor or individual TAs if possible — we can get
quick answers for you and coordinate better if it goes to the staff

mailto:cse333-staff@cs.uw.edu

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Introductions: Students

« ~70 students this quarter

« Expected background

= Prereq: CSE 351 — C, pointers, memory model, linker, system calls
= CSE 391 or Linux skills needed for CSE 351 assumed

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Introductions: Students

o 9 indivi i THIS 15 DR. ADAMS. SHES A S0CIAL

° Near.ly 70/3.01c individuals will DT DGEr RO TE WoRLTS TP
experience signs and symptoms | EXPERT ON IMPOSTOR SYNDROME.
of impostor phenomenon at HAHA, DON'T BE SILLY! THERE

: T ARE LOTS OF SCHOLARS WHO
least once in their life. HAVE MADE. MORE. SIGNIFICANT .
. . ot . . |
https://en.wikipedia.org/wiki/Imposto _.OH MY GOD

r syndrome

« If you’re confused, probably
others are too. Speak up and
you’ll save someone else!

https://en.wikipedia.org/wiki/Impostor_syndrome
https://en.wikipedia.org/wiki/Impostor_syndrome

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Course Map: 100,000 foot view

C application C++ application Java application

C standard C++ STL/boost/
library (glibc) standard library

OS / app interface
(system calls)

HW/SW interface
(x86 + devices)

hardware

CPU memory storage network
GPU clock audio radio peripherals

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Systems Programming

« The programming skills, knowledge, and engineering
discipline you need to build a system

= Knowledge: long list of interesting topics

- Concurrency, OS interfaces and semantics, techniques for consistent
data management, distributed systems algorithms, ...
- Most important: a deep(er) understanding of the “layer below”

= Discipline: testing, debugging, performance analysis, code quality

10

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

CSE333, Summer 2025

Code Quality

« Learning to writing clean code is a lifelong process

« Good code quality will help you in the long run

= Complexity is tamed by good habits and good abstractions
= Systems code is complex!

= Easy to understand code now will help you later.

« So use these:
= Coding style conventions

= Unit testing, code coverage testing, regression testing
= Documentation (code comments, design docs)

= Code reviews

11

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Lecture Outline

<« Course Introduction
¢ Course Policies

= https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

s Clintro

12

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

This is Only an Overview!

% This is just the summary/highlights

= ... but you must read the full details online!
https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

13

https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Course Components

«» Lectures (24)

* Introduce the concepts; take notes!!!
= Materials are posted at 6:00pm the night before

« Sections (9)

= Applied concepts, important tools and skills for assignments, clarification
of lectures, exam review and preparation

<« Final exam and midterm

= Goalis to revisit and internalize concepts

= Tests will be handwritten: relying too much on your IDE will come
back to bite you!

14

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Course Components

«» Programming Exercises (~18)
= Roughly one per lecture, due the morning before the next lecture

= Coarse-grained grading (check plus/check/check minus =0, 1, 2, or 3)

«» Programming Projects (0+4)
= Warmup, then 4 “homeworks” that build on each other

= |Individual work

«» Lecture Activities (~40)
= |n-class polls graded on completion not correctness
" Lecture activities can be made up only for particular hardship

" But since life can get in the way, three days of missed lecture activities
will be dropped

15

CSE333, Summer 2025

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

Grading

¢ Exercises: ~“30%
= Submitted via Gradescope
= Evaluated on correctness and code quality; drop the lowest score

¢ Homeworks: ~30%
= Submitted via GitLab; must tag commit that you want graded
= “Does it work?” and code quality both matter, roughly equally

= Binaries provided if you didn’t get previous part working or prefer to start
with a known good solution to previous parts

¢ Lecture Activities: ~15%

¢ Midterm: ~10%
¢ Final: ~15%

16

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Deadlines and Student Conduct

« Late policies

= Exercises

®* no late submissions accepted
®* due 10 am before class

= Homeworks:

* 4 late days for entire quarter
®* max 2 per project

= We will work with you if unusual circumstances / problems

17

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Deadlines and Student Conduct

Academic Integrity (read the full policy on the web)

K/
%

= This does not mean suffer in silence; study groups and discussions
are a great way to learn!

= Just don’t share or copy code or answers directly

18

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

LLMs, Chatbots, and Al Coding Tools

+» These new tools are everywhere
= You might even end up using them in your future jobs
= They can be powerful when used carefully in certain settings

+» But for this class, you can’t use (most of) them

= We’re learning to do things the hard way, for a strong
foundation

= There’s some emerging evidence that usage of Al tools
decreases your cognitive abilities

[1] “Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an Al Assistant for
Essay Writing Task” https://arxiv.org/abs/2506.08872

19

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

LLMs, Chatbots, and Al Coding Tools

+ Don’t use Al-enabled editors or tools

« Don’t ask any chatbots questions like:
= “How do I fix this code?”
= “Can you write me a function that...”
= “How do | finish this assignment?”

« | reserve the right to ask you into my office to explain any
code you’ve submitted for this class

20

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

LLMs, Chatbots, and Al Coding Tools

« If it helps you, you can ask LLMs questions like:
= “How are pointers related to arrays in C?”
= “Can you explain OS system calls? | don’t understand X”

= “What is the function called that runs whenever | create a new
object in C++?”

« But always check the answer with a second source
= Making things up is still a serious problem with these tools

= Don’t answer another students question with a chatbot
response; always use the primary source

21

CSE333, Summer 2025

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

Gadgets

Please:
+» Keep your laptop usage to class-related materials.

«» People behind you can see your screen, and it can be really
distracting!

« The only app you should be using on your phone is
PollEverywhere

22

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Starting.... NOW!

First exercise out today, due Wednesday morning 10am before class
HWO (the warmup project) published wednesday,
due next Monday

Goal is to figure out setup and computing infrastructure
right away so we don’t put that off and then have a crunch
later in the quarter

Logistics for larger projects explained in sections Thursday
- It’s okay to ignore the homework details until section on Thursday,
but try to start the setup

- Bring a laptop to sections! We may have time to go through some
of the initial configuration parts for hwO.

23

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Lecture Outline

<« Course Introduction
« Course Policies

= https://courses.cs.washington.edu/courses/cse333/24su/syllabus.html

¢ Clintro

= Workflow, Variables, Functions

25

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

SECOND EDITION

THE

C

+ Created in 1972 by Dennis Ritchie PROGRAMMING
LANGUAGE
= Designed for creating system software AN ERNGHAN

PRENTICE HALL SOFTWARE SERIES

= Portable across machine architectures

= More recently updated in 1999 (C99) and 2011 (C11)
and 2017 (C17)

<« Characteristics

= “Low-level” language that allows us to exploit underlying features
of the architecture — but easy to fail spectacularly (!)

= Procedural (not object-oriented)
= Typed but unsafe (often necessary to bypass the type system)

= Small standard library compared to Java, C++, most others....

26

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

CSE333, Summer 2025

Generic C Program Layout

-

#include <system files> We’ll cover
#include "local files" this stuff late

next week

#define macro name macro expr

/* declare functions */
/* declare external variables &

We’'ll cover
int main(int argc, char* argv([]) this stuff

/* the innards */ today

/* define other functions */

.

27

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

C Syntax: main

« All programs start with main:

[int main (int argc, char* argv[]){]

What do the arguments mean?

7
L X4

= argc contains the number of strings on the command line

(the executable name counts as one, plus one for each argument).

= 31 gV isan array containing pointers to the arguments as strings
(more on arrays and pointers later).

«» Example: S ./foo hello 87

"= argc = 3

" argv[0]="./foo", argv[l]="hello", argv[2]="87"

28

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

When Things Go Wrong...

«» Processes return an “exit code” when they terminate

= Can be read and used by parent process (shell or other)
* In main: return EXIT_SUCCESS; or return EXIT_FAILURE; (e.g.,0or 1)

« In C, functions do the same!
= C does not have exception handling (no try/catch)
= Errors are returned as integer error codes from functions

= Because of this, it’s easy to miss an important error

« Crashes

* |f you do something bad, you hope to get a “segmentation fault”
(believe it or not, this is the “good” option)

29

YA/ UNIVERSITY of WASHINGTON

LO1: Intro, C CSE333, Summer 2025

Java vs. C (351 refresher)

+ Are Java and C mostly similar (S) or significantly different
(D) in the following categories?

= List any differences you can recall (even if you put ‘S’)

Language Feature S/D Differencesin C

Control structures S

Primitive datatypes S/D | Similar but sizes can differ (char, esp.), unsigned,
no boolean, uninitialized data, ...

Operators S Java has >>>, C has ->

Casting D | Java enforces type safety, C does not

Arrays D Not objects, don’t know their own length, no
bounds checking

Memory management D Manual (malloc/free), no garbage collection

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Primitive Types in C

No standard size!
+ Integer types Can depend on architecture,

» char, int compiler, etc.

+ Floating point
» float,double Size technically also unspecified,

but pretty much always the same

«» Modifiers
short [int]

long [int]

signed [char, int]

unsigned [char, int]

32

YA/ UNIVERSITY of WASHINGTON

CSE333, Summer 2025

LO1: Intro, C

C99 Extended Integer Types

% Solves the conundrum of “how bigisan 1ong

int?”

p
#include <stdint.h>

volid foo (void)

Use extended types in most cse333 code

{

r

vold sumstore (int

\

int8 t a; // exactly 8 bits, signed
intlé t b; // exactly 16 bits, signed
int32 t c¢; // exactly 32 bits, signed
int64 t d; // exactly 64 bits, signed
uint8 t w; // exactly 8 bits, unsigned

void sumstore(int32 t x,

int32 t vy,

But int is usually fine for simple counters
int32 t* dest) {

33

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Basic Data Structures

« Cdoes not support objects!!!
Arrays are contiguous chunks of memory

<

>

= Arrays have no methods and do not know their own length

= Can easily run off ends of arrays in C —security bugs!!!

e®

%

Strings are null-terminated char arrays

= Strings have no methods, but st ring.h has helpful utilities

char* x = "hello\n"; x| h !l e | | | | o [\n|\O

e®

>

Structs are the most object-like feature, but are just

collections of fields — no “methods” or functions
+ (but can contain pointers to functions!)

>

34

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Function Definitions

<+ Generic format:

returnType fname (type paraml, .., type paramN) {
// statements

4 N
// sum of integers from 1 to max

int sumTo (int max) {
int 1, sum = 0;

for (i = 1; i <= max; i++) {
sum += 1i;

}

return sum;

35

YA/ UNIVERSITY of WASHINGTON LO1: Intro, C

CSE333, Summer 2025

Function Ordering

« You shouldn’t call a function that hasn’t been declared yet
« This is because C compilers used to be single-pass

sum_badorder.c [#include <stdio.h>)

int main(int argc, char** argv) {
printf ("sumTo (5) is: %d\n", sumTo (5)):;
return O;

}

// sum of integers from 1 to max
int sumTo (int max)
int i, sum = 0;

for (i = 1; 1 <= max; i++) {
sum += 1;
}

return sum;

}
- /

36

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Solution 1: Reverse Ordering

« Simple solution; however, imposes ordering restriction on
writing functions (who-calls-what?)

sum_betterorder.c [#include <stdio.h>

// sum of integers from 1 to max
int sumTo (int max)
int i, sum = 0;

for (i = 1; 1 <= max; i++) {
sum += 1;
}

return sum;

}

int main(int argc, char** argv) {
printf ("sumTo (5) is: %d\n", sumTo(5));
return O;

}
- /

37

YA/ UNIVERSITY of WASHINGTON

LO1: Intro, C

CSE333, Summer 2025

Solution 2: Function Declaration

« Teaches the compiler arguments and return types;
function definitions can then be in a logical order, and call
each other without restriction

sum_declared.c

Code examples from
slides are on the course
web for you to
experiment with!

/%include <stdio.h>
int sumTo (int) ;

int main(int argc,
printf ("sumTo (5)
return 0O;

}

int sumTo (int max)
int i, sum = 0;
for (1 = 1; i <=
sum += i;
}

return sum;

\}

// func prototype

char** argv) {
is:

// sum of integers from 1 to max

{

max; 1i++) {

sd\n", sumTo (5)) ;

~

38

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Declaration vs. Definition

¢« C/C++ make a careful distinction between these two

« Definition: the thing itself
= e.g. code for function, variable definition that creates storage

= Must be exactly one definition of each thing (no duplicates)

« Declaration: description of a thing defined elsewhere

= e.g. function prototype, external variable declaration
- Often in header files and incorporated via #include

« Should also #include declaration in the file with the actual definition to
check for consistency

* Needs to appear in all files that use the thing
- Must appear before first use

39

YA/ UNIVERSITY of WASHINGTON

Multi-file C Programs

LO1: Intro, C

CSE333, Summer 2025

definition

Csourcefilel| void sumstore (int x,
(sumstore.c) *dest

X + vy

int vy,

int* dest) {

C source file 2 (#include <stdio.h> _
(sumnum.c) | | | | declaration
vold sumstore(int x, i1nt y, 1nt* dest);
int main(int argc, char** argv) {

int z, x = 351, y = 333;
sumstore (x,vy, &2) ;
printf ("%d + %d = %d\n",x,vy,2);
return O;

\}

Compile together:

$ gcc —O sumnum sumnum.c sumstore.c

40

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

C Workflow

Editor (emacs, vi) or IDE (eclipse)

(G Croe) (oo U

P S —
Statically-linked [o] I[foo.o] [bar.o]J Obiject files (. o)
libraries ' ~= _l ________
LINK LINK
_ _) [bar]
Shared libraries [lle : so]
LINK lLOAD
bar]

l EXECUTE, DEBUG, ...

41

YA/ UNIVERSITY of WASHINGTON

LO1: Intro, C

CSE333, Summer 2025

C to Machine Code

/§oid sumstore (int x, int y,<\
int* dest) { C source file
*dest = x + y; (sumstore.c)
\J Y,
lC compiler (gcc -S) C compiler
(sumstore: R (gcc -c)
addl $edi, %esi Assembly file
movl %esi, (%$rdx) (sumstore. s)
_ ret Y.
lAssembler (gcc -coras)
400575: 01 fe .
39 37 Machine code

sumstore.o
c3 ()

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

Compiling Multi-file Programs

« The linker combines multiple object files plus
statically-linked libraries to produce an executable

* Includes many standard libraries (e.g. 1ibc, crtl)
- Alibrary is just a pre-assembled collection of . o files

1 gcc -c
sumstore.cJ sumstore.o

1d or
gcc

Sumnum]

gcc -cC
[sumnum. C } sumnum. o

libraries
(e.g. 1ibc)

43

W UNIVERSITY of WASHINGTON LO1: Intro, C CSE333, Summer 2025

To-do List

+ Explore the website thoroughly: http://cs.uw.edu/333

«» Computer setup: CSE labs, attu, or CSE Linux VM

» Exercise 0 is due 10 am sharp on Wednesday
= Find exercise spec on website, submit via Gradescope
= Sample solution will be posted later that day

= Give it your best shot

« Project repos created and hwO out Wednesday

= Ask questions on Ed!
= More questions? Bring them (and your laptop) to section

44

http://cs.uw.edu/333

