W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

C++ Inheritance Il, Casting
CSE 333 Spring 2025

Instructor: Hal Perkins

Teaching Assistants:

Hannah Hempstead Lainey Jeon Hannah Jiang
lrene Lau Nathan Li Leanna Nguyen
Janani Raghavan Deeksha Vatwani Yiging Wang

Jennifer Xu

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Administrivia

4

Midterm exam in class Friday!

" Topic list and old exams on website now

" Closed book, slides, etc., but you may have one 5x8 notecard with
whatever handwritten notes you want on both sides

- Free blank cards available in class this week
- Review in sections this week — bring questions!!

New exercise 13 out today — create some simple classes
related by inheritance

®= Due Monday morning — time to work on it after the exam

HW3 due in a two weeks

= Get going on it right after the exam

= “How to debug disk files” and related things in sections next week

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Lecture Outline

% C++ Inheritance
= Static Dispatch

= Abstract Classes
= Constructors and Destructors

= Assignment

% C++ Casting

+ Reference: C++ Primer, Chapter 15

CSE333, Spring 2025

W UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting

What happens if we omit “virtual”?

+ By default, without virtual, methods are dispatched statically

*

= At compile time, the compiler generates a call to the address of the
class’ method in the generated code . text segment

- Based on the compile-time visible type of the called code (callee)

" This is different than Java

[class Derived : public Base { ... };
—>| Derived: : foo ()

int main(int argc, char** argv) {
Derived d;
Derived* dp = &d;
Base* bp = &d;
dp->foo () ;
bp->foo () ;
return 0O;

» Base: :foo ()

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Static Dispatch Example

+ Removed virtual on methods: Stock.h

double Stock: :GetMarketValue () const;
double Stock::GetProfit () const;

DividendStock dividend () ;
DividendStock* ds = ÷nd;
Stock* s = ÷nd;

// Calls DividendStock::GetMarketValue ()
ds->GetMarketValue () ;

// Calls Stock::GetMarketValue ()
s—->GetMarketValue () ;

// Calls Stock::GetProfit(), since that method is inherited.
// Stock::GetProfit () calls Stock::GetMarketValue ().
ds—->GetProfit () ;

// Calls Stock::GetProfit().
// Stock::GetProfit () calls Stock::GetMarketValue ().
s—->GetProfit () ;

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

virtual is “sticky”

« IfX::£ () is declared virtual, then a vtable will be
created for class X and for all of its subclasses

" The vtables will include function pointers for (the correct) £

+» £ () will be called using dynamic dispatch even if
overridden in a derived class without the virtual
keyword

" Good style to help the reader and avoid bugs by using override

- Style guide controversy, if you use override should you use
virtual in derived classes? Recent style guides say just use
override, but you’'ll sometimes see both, particularly in older code

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Why Not Always Use virtual?

+~ Two (fairly uncommon) reasons:
= Efficiency:
- Non-virtual function calls are a tiny bit faster (no indirect lookup)
- A class with no virtual functions has objects without a vptr field

= Control:

- If £() callsg () inclass X and g is not virtual, we're guaranteed to
call X: :g () and not g () in some subclass

— Particularly useful for framework design

% InJava, all methods are virtual, except static class
methods, which aren’t associated with objects

L)

4

» In C++ and C#, you can pick what you want

= Omitting virtual can cause obscure bugs

W UNIVERSITY of WASHINGTON

Mixed Dispatch

L19: C++ Inheritance Il, Casting

CSE333, Spring 2025

+» Which function is called is a mix of both compile time and
runtime decisions as well as how you call the function

= |f called on an object (e.g. ob7 .Fecn ()), usually optimized into a
hard-coded function call at compile time

= |f called via a pointer or reference:
DeclaredT *ptr = new ActualT;
ptr->Fcn () ;

Is Fcn () defined in
DeclaredT
(either locally or
inherited)?

lNo

Error

Yes

// which version 1s called?

|

Is DeclaredT: :Fcn ()
marked virtual in
DeclaredT orin one of
its superclasses?

Yes

J

‘No

Static dispatch — call
DeclaredT::fcn ()

Dynamic dispatch — call most-
derived version of f£cn ()
visible in ActualT

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Mixed Dispatch Example

.)) A
. void main(int argc,
mixed.cc
, N char** argv) {
class A { A a;
public: B b;:
void ml() { cout << "al"; }
virtual void m2 () { cout << "a2"; } A* a ptr_a = &a;
s A* a ptr b = &b;
———er———
class B : public A { B* b ptr b = &b;
public:
void ml() { cout << "bl"; } a ptr a->ml(); // al
void m2 () { cout << "b2"; } a ptr a->m2(); // az
};
a ptr b->ml(); // al
a ptr b->m2(); // b2
s g b ptr b->ml(); // bl
b ptr b->m2(); // b2
\} Y

11

W UNIVERSITY of WASHINGTON

Mixed Dispatch Example

mixed.cc

(class A {

public:
// ml will use static dispatch
void ml() { cout << "al, "; }
// m2 will use dynamic dispatch
virtual void m2() { cout << "a2";

}
b g

class B public A {
public:
void ml() { cout << "bl, "; }

// m2 is still virtual by default
void m2 () { cout << "b2"; }

b g

.

\

L19: C++ Inheritance Il, Casting

CSE333, Spring 2025

(void main (int argc, B
char** argv) {
A ajy
B b;
A* a ptr a = &a;
A* a ptr b = &b;
———p G
B* b ptr b = &b;
a ptr a->ml(); // al
a ptr a->m2(); // a2
a_ptr b->ml(); // al
a ptr b->m2(); // b2
b ptr b->ml(); // bl
b ptr b->m2(); // b2
& J

12

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Abstract Classes

«» Sometimes we want to include a function in a class but
only implement it in derived classes

" |nJava, we would use an abstract method

|”

" |n C++, we use a “pure virtual” function

« Example:|virtual string noise () = 0;

+ A class containing any pure virtual methods is abstract
" You can’t create instances of an abstract class (same as Java)
= Extend abstract classes and override methods to use (also same)
+ A class containing only pure virtual methods is the same
as a Java interface

= Pure type specification without implementations
15

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Lecture Outline

% C++ Inheritance
= Static Dispatch

= Abstract Classes
= Constructors and Destructors

= Assighment

% C++ Casting

+ Reference: C++ Primer, Chapter 15

16

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Derived-Class Objects

+ A derived object contains “subobjects” corresponding to
the data members inherited from each base class

= No guarantees about how these are laid out in memory (not even
contiguousness between subobjects)

- Except: inherited part of object will have same layout it did in the
superclass

+» Conceptual structure of DividendStock object:

symbol

members inherited | total shares
from Stock | total cost

current price

members defined by

dividend
DividendStock | oV TESHES_

17

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Constructors and Inheritance

« A derived class does not inherit the base class’
constructor

" The derived class must have its own constructor

= A synthesized default constructor for the derived class first
invokes the default constructor of the base class and then
initializes the derived class’ member variables

- Compiler error if the base class has no default constructor

= The base class constructor is invoked before the constructor of
the derived class

- You can use the initialization list of the derived class to specify which
base class constructor to use

18

CSE333, Spring 2025

W UNIVERSITY of WASHINGTON

Constructor Examples

L19: C++ Inheritance Il, Casting

goodctor.cc

s

.

badctor.cc
class Base { // no default ctor b
public:
Base (int y) : y(y) { }
int y;

b g

// Compiler error when you try to
// 1lnstantiate a Derl, as the

// synthesized default ctor needs
// to invoke Base's default ctor.

class Derl : public Base {
public:

int z;
I
class Der2 : public Base {
public:

Der2 (int vy, int z)
Base (y), z(z) { }
int z;

b g

[// has default ctor

class Base {
public:

int y;
b g

// works now
class Derl : public Base
public:

int z;

¥

// still works

class Der2 : public Base
public:
Der2 (int z) : z(z) { }
int z;

¥

{

w

19

W UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casting

Destructors and Inheritance

« Destructor of a derived
class:

= First runs body of the dtor

= Then invokes of the dtor
of the base class

+ Static dispatch of
destructors is almost
always a mistake!

= Good habit to always
define a dtor as virtual

- Empty body if there’s
no work to do

CSE333, Spring 2025

baddtor.cc

(class Base {
public:
Base () { x =
~Base ()
int* x;

¥

class Derl

public:
Derl() { y =
~Derl ()
int* y;

¥

void foo () {

Base* bOptr =
Base* blptr =

delete bOptr;
delete blptr;

new int; }
{ delete x; }

: public Base {

new int; }
{ delete y; }

new Base;
new Derl;

// OK

// leaks Derl::

\

20

L19: C++ Inheritance Il, Casting

CSE333, Spring 2025

W UNIVERSITY of WASHINGTON

Assignment and Inheritance

+» C++ allows you to assign
the value of a derived
class to an instance of
a base class

= Known as object slicing

- It’s legal since b=d passes
type checking rules

- But b doesn’t have space
for any extra fields in d

slicing.cc

(class Base {
public:

Base (int x) : X
int x ;

¥

class Derl : public Base {
public:
Derl (int vy)
int y ;

¥

: Base(l0), y (y)

void foo ()
Base b (1)
Derl d(2);

{

a =
b =

// compiler error

b;
d; // what happens to y ?

}

\.

{

}

N\

21

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

STL and Inheritance

+» Recall: STL containers store copies of values

= What happens when we want to store mixes of object types in a
single container? (e.g. Stock and DividendStock)

" You get sliced ®

r#include <list>
#include "Stock.h"
#include "DividendStock.h"

int main(int argc, char** argv) {
Stock s;
DividendStock ds;
list<Stock> 1li;

1i.push back(s); // OK
li.push back(ds); // OUCH!

return 0;

22

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

STL and Inheritance

+» Instead, store pointers to heap-allocated objects in STL
containers
" No slicing! ©
" sort () doesthe wrong thing ®

- But you can use overloaded versions of sort and supply comparator
function to determine element order

" You have to remember to de 1 et e your objects before
destroying the container ®

- Smart pointers!

— (next time)

23

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Lecture Outline

% C++ Inheritance
= Static Dispatch

= Abstract Classes
= Constructors and Destructors

= Assignment

% C++ Casting

+» Reference: C++ Primer §4.11.3, 19.2.1

24

W UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casting

Explicit Casting in C

+ Simple syntax:[lhs = (new type) rhs;]
+ Used to:

= Convert between pointers of arbitrary type
- Don’t change the data, but treat differently
" Forcibly convert a primitive type to another

- Actually changes the representation

% You can still use C-style casting in C++, but that means
using one notation for different purposes

CSE333, Spring 2025

25

W UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting

CSE333, Spring 2025

Casting in C++

% C++ provides an alternative casting style that is more
informative:

" static cast<to type>(expression)
" dynamic cast<to type>(expression)
" const cast<to type>(expression)

" reinterpret cast<to type>(expression)

+» Always use these in C++ code

" |ntent is clearer

= Easier to find particular kinds of casts in code via searching

26

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

staticcast.cc

static cast (class A ‘
— public:
int x;
» statlc cast can convert: 6
: 1 B
= Pointers to classes of related type cecs B
public:
- Compiler error if classes are not related float x;
Y i
- Dangerous to cast down a class hierarchy
. . class C : public B {
" Non-pointer conversion srilodl s
- eg. floattoint } .Char x
» static castis void foo() {
o B b; C c;

checked at compile time

// compiler error

A* aptr = static cast<A*>(&b);
// OK .

B* bptr = static cast<B*>(&c);
// compiles, but dangerous

C* cptr = static cast<C*>(&b);

27

W UNIVERSITY of WASHINGTON

dynamic cast
» dynamilic cast can convert:
" Pointers to classes of related type

= References to classes of related type

L19: C++ Inheritance Il, Casting

dynamic cast is checked at both

CSE333, Spring 2025

dynamiccast.cc

class Base {

public:
virtual void foo () { }
float x;

} i

class Derl
public:
char x;

¥

public Base {

[void bar ()
Base b;

compile time and
run time

" Casts between
unrelated classes fail
at compile time

Casts from base to
derived fail at run
time if the pointed-to
object is not the
derived type

bptr
dptr

// Run-time check fails,
&b;

dynamic cast<Derl*> (bptr);
assert (dptr

{
Derl d;

// OK (run-time check passes)
Base* bptr
assert (bptr

dynamic cast<Base*> (&d) ;
!= nullptr);

// OK (run-time check passes)
Derl* dptr
assert (dptr

dynamic cast<Derl*> (bptr);
!= nullptr);

returns nullptr

!= nullptr);

W UNIVERSITY of WASHINGTON

const cast

L19: C++ Inheritance Il, Casting

» const cast adds or strips const-ness

= Dangerous (!)

rvoid foo(int* x) {
*x+4;
}

volid bar (const int* x) {
foo (x);

}

int x = 7;
bar (&x) ;

return 0O;

foo (const cast<int*>(x));

// compiler error
// succeeds

int main(int argc, char** argv) {

CSE333, Spring 2025

29

W UNIVERSITY of WASHINGTON

L19: C++ Inheritance Il, Casting

CSE333, Spring 2025

reinterpret cast
+ reinterpret cast casts between incompatible types
= Low-level reinterpretation of the bit pattern
" e.g. storing a pointerin an int, or vice-versa
- Works as long as the integral type is “wide” enough

= Converting between incompatible pointers
- Dangerous (!)

 This is used (carefully) in hw3

30

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Implicit Conversion

+» The compiler tries to infer some kinds of conversions

= When types are not equal and you don’t specify an explicit cast,
the compiler looks for an acceptable implicit conversion

rvoid bar (std::string x); R
void foo () {
int x = 5.7; // conversion, float -> int
bar ("hi") ; // conversion, (const char*) -> string
char ¢ = x; // conversion, 1int -> char
L} J

31

CSE333, Spring 2025

W UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting

Sneaky Implicit Conversions

%+ (const char*)to string conversion?

= |f a class has a constructor with a single parameter, the compiler
will exploit it to perform implicit conversions
= At most, one user-defined implicit conversion will happen

- Cando int = Foo, butnot int » Foo » Baz

rclass Foo {

public:
Foo (int x) : x(x) { }
int x;

¥

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // equivalent to return Bar (Foo(5)) ;

}) 32

CSE333, Spring 2025

W UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting

Avoiding Sneaky Implicits

+» Declare one-argument constructors as explicit if you
want to disable them from being used as an implicit

conversion path
= Often a good idea — prevents unexpected implicit conversions

rclass Foo {

public:
explicit Foo(int x) : x(x) { }
int x;

¥

int Bar (Foo f) {
return f.x;

}

int main(int argc, char** argv) {
return Bar(5); // compiler error
} y 33

W UNIVERSITY of WASHINGTON L19: C++ Inheritance II, Casting

Extra Exercise #1

+ Design a class hierarchy to represent shapes

= e.g. Circle, Triangle, Square

+» Implement methods that:

Construct shapes

Move a shape (i.e. add (x,y) to the shape position)
Returns the centroid of the shape

Returns the area of the shape

Print (), which prints out the details of a shape

CSE333, Spring 2025

34

W UNIVERSITY of WASHINGTON L19: C++ Inheritance Il, Casting CSE333, Spring 2025

Extra Exercise #2

L)

+ Implement a program that uses Extra Exercise #1 (shapes
class hierarchy):

= Constructs a vector of shapes

= Sorts the vector according to the area of the shape

" Prints out each member of the vector

4

» Notes:
= Avoid slicing!

= Make sure the sorting works properly!

35

