
CSE333, Spring 2025L15: C++ STL

C++ Standard Template Library
CSE 333 Spring 2025

Instructor: Hal Perkins

Teaching Assistants:
Hannah Hempstead Lainey Jeon Hannah Jiang
Irene Lau Nathan Li Leanna Nguyen
Janani Raghavan Deeksha Vatwani Yiqing Wang
Jennifer Xu

CSE333, Spring 2025L15: C++ STL

Administrivia (added Friday)

v New exercise ex11 out today. Due Monday morning.
§ uses STL vector and sort

v HW3 description posted now
§ Starter code will be pushed to repos tonight or tomorrow
§ Short demo today or early next week depending on time available

v Midterm exam next Friday, 5/9, in class
§ Topic list and old exams & topic list on website
§ Closed book, slides, etc., but you may have one 5x8 notecard with

whatever handwritten notes you want on both sides
• Free blank cards available in class this week and next J

§ Review in sections next week – bring questions!!

2

CSE333, Spring 2025L15: C++ STL

C++’s Standard Library

v C++’s Standard Library consists of four major pieces:

1) The entire C standard library

2) C++’s input/output stream library

• std::cin, std::cout, stringstreams, fstreams, etc.

3) C++’s standard template library (STL) ☜

• Containers, iterators, algorithms (sort, find, etc.), numerics

4) C++’s miscellaneous library

• Strings, exceptions, memory allocation, localization

3

CSE333, Spring 2025L15: C++ STL

STL Containers J

v A container is an object that stores (in memory) a
collection of other objects (elements)
§ Implemented as class templates, so hugely flexible
§ More info in C++ Primer §9.2, 11.2

v Several different classes of container
§ Sequence containers (vector, deque, list, ...)
§ Associative containers (set, map, multiset, multimap,
bitset, ...)

§ Differ in algorithmic cost and supported operations

4

CSE333, Spring 2025L15: C++ STL

STL Containers L

v STL containers store by value, not by reference
§ When you insert an object, the container makes a copy
§ If the container needs to rearrange objects, it makes copies

• e.g. if you sort a vector, it will make many, many copies
• e.g. if you insert into a map, that may trigger several copies

§ What if you don’t want this (disabled copy constructor or copying
is expensive)?
• You can insert a wrapper object with a pointer to the object

– We’ll learn about these “smart pointers” soon

5

CSE333, Spring 2025L15: C++ STL

Our Tracer Class

v Wrapper class for an int value_
§ Default ctor, cctor, dtor, op=, op< defined
§ friend function operator<< defined
§ Also holds unique int id_ (increasing from 0)
§ Private helper method PrintID() to return initial
"(id_,value_)" as a string before any modification

§ Class and member definitions can be found in Tracer.h and
Tracer.cc

v Useful for tracing behaviors of containers
§ All methods print identifying messages
§ Unique id_ allows you to follow individual instances

6

CSE333, Spring 2025L15: C++ STL

STL vector

v A generic, dynamically resizable array
§ http://www.cplusplus.com/reference/stl/vector/vector/
§ Elements are store in contiguous memory locations

• Elements can be accessed using pointer arithmetic if you’d like
• Random access is O(1) time

§ Adding/removing from the end is cheap (amortized constant
time)

§ Inserting/deleting from the middle or start is expensive (linear
time)

7

http://www.cplusplus.com/reference/stl/vector/vector/

CSE333, Spring 2025L15: C++ STL

vector/Tracer Example

8

vectorfun.cc
#include <iostream>
#include <vector>
#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {
 Tracer a, b, c;
 vector<Tracer> vec;

 cout << "vec.push_back " << a << endl;
 vec.push_back(a);
 cout << "vec.push_back " << b << endl;
 vec.push_back(b);
 cout << "vec.push_back " << c << endl;
 vec.push_back(c);

 cout << "vec[0]" << endl << vec[0] << endl;
 cout << "vec[2]" << endl << vec[2] << endl;

 return EXIT_SUCCESS;
}

CSE333, Spring 2025L15: C++ STL

Why All the Copying?

v What’s going on here?
v Answer: a C++ vector (like Java’s ArrayList) is initially

small, but grows if needed as elements are added
§ Implemented by allocating a new, larger underlying array, copy

existing elements to new array, and then replace previous array
with new one

v And vector starts out really small by default, so it needs to
grow almost immediately!
§ But you can specify an initial capacity if “really small” is an

inefficient initial size (use “reserve” member function)
§ Example: see vectorcap.cc

9

CSE333, Spring 2025L15: C++ STL

STL iterator

v Each container class has an associated iterator class (e.g.
vector<int>::iterator) used to iterate through
elements of the container
§ http://www.cplusplus.com/reference/std/iterator/
§ Iterator range is from begin up to end i.e., [begin , end)

• end is one past the last container element!

§ Some container iterators support more operations than others
• All can be incremented (++), copied, copy-constructed
• Some can be dereferenced on RHS (e.g. x = *it;)
• Some can be dereferenced on LHS (e.g. *it = x;)
• Some can be decremented (--)
• Some support random access ([], +, -, +=, -=, <, > operators)

10

http://www.cplusplus.com/reference/std/iterator/

CSE333, Spring 2025L15: C++ STL

iterator Example

11

#include <vector>

#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {
 Tracer a, b, c;
 vector<Tracer> vec;

 vec.push_back(a);
 vec.push_back(b);
 vec.push_back(c);

 cout << "Iterating:" << endl;
 vector<Tracer>::iterator it;
 for (it = vec.begin(); it < vec.end(); it++) {
 cout << *it << endl;
 }
 cout << "Done iterating!" << endl;
 return EXIT_SUCCESS;
}

vectoriterator.cc

CSE333, Spring 2025L15: C++ STL

Type Inference (C++11)

v The auto keyword can be used to infer types
§ Simplifies your life if, for example, functions return complicated

types
§ The expression using auto must contain explicit initialization for

it to work // Calculate and return a vector
// containing all factors of n
std::vector<int> Factors(int n);

void foo(void) {
 // Manually identified type
 std::vector<int> facts1 =
 Factors(324234);

 // Inferred type
 auto facts2 = Factors(12321);

 // Compiler error here
 auto facts3;
}

12

CSE333, Spring 2025L15: C++ STL

auto and Iterators

v Life becomes much simpler!

13

for (vector<Tracer>::iterator it = vec.begin(); it < vec.end(); it++) {
 cout << *it << endl;
}

for (auto it = vec.begin(); it < vec.end(); it++) {
 cout << *it << endl;
}

CSE333, Spring 2025L15: C++ STL

Range for Statement (C++11)

v Syntactic sugar similar to Java’s foreach
§ General format:

§ declaration defines loop variable
§ expression is an object representing a sequence

• Strings, initializer lists, arrays with an explicit length defined, STL
containers that support iterators

14

// Prints out a string, one
// character per line
std::string str("hello");

for (auto c : str) {
 std::cout << c << std::endl;
}

for (declaration : expression) {
 statements
}

CSE333, Spring 2025L15: C++ STL

Updated iterator Example

15

#include <vector>

#include "Tracer.h"

using namespace std;

int main(int argc, char** argv) {
 Tracer a, b, c;
 vector<Tracer> vec;

 vec.push_back(a);
 vec.push_back(b);
 vec.push_back(c);

 cout << "Iterating:" << endl;
 for (auto & p : vec) { // p is a reference (alias) of vec
 cout << p << endl; // element here; not a new copy
 }
 cout << "Done iterating!" << endl;
 return EXIT_SUCCESS;
}

vectoriterator_2011.cc

CSE333, Spring 2025L15: C++ STL

STL Algorithms

v A set of functions to be used on ranges of elements
§ Range: any sequence that can be accessed through iterators or

pointers, like arrays or some of the containers
§ General form:

v Algorithms operate directly on range elements rather
than the containers they live in
§ Make use of elements’ copy ctor, =, ==, !=, <
§ Some do not modify elements

• e.g. find, count, for_each, min_element, binary_search

§ Some do modify elements
• e.g. sort, transform, copy, swap

16

algorithm(begin, end, ...);

CSE333, Spring 2025L15: C++ STL

Algorithms Example

17

#include <vector>
#include <algorithm>
#include "Tracer.h"
using namespace std;

void PrintOut(const Tracer& p) {
 cout << " printout: " << p << endl;
}

int main(int argc, char** argv) {
 Tracer a, b, c;
 vector<Tracer> vec;

 vec.push_back(c);
 vec.push_back(a);
 vec.push_back(b);
 cout << "sort:" << endl;
 sort(vec.begin(), vec.end());
 cout << "done sort!" << endl;
 for_each(vec.begin(), vec.end(), &PrintOut);
 return EXIT_SUCCESS;
}

vectoralgos.cc

CSE333, Spring 2025L15: C++ STL

STL list

v A generic doubly-linked list
§ http://www.cplusplus.com/reference/stl/list/
§ Elements are not stored in contiguous memory locations

• Does not support random access (e.g. cannot do list[5])

§ Some operations are much more efficient than vectors
• Constant time insertion, deletion anywhere in list
• Can iterate forward or backwards

§ Has a built-in sort member function
• Doesn’t copy! Manipulates list structure instead of element values

19

http://www.cplusplus.com/reference/stl/list/

CSE333, Spring 2025L15: C++ STL

list Example

20

#include <list>
#include <algorithm>
#include "Tracer.h"
using namespace std;

void PrintOut(const Tracer& p) {
 cout << " printout: " << p << endl;
}

int main(int argc, char** argv) {
 Tracer a, b, c;
 list<Tracer> lst;

 lst.push_back(c);
 lst.push_back(a);
 lst.push_back(b);
 cout << "sort:" << endl;
 lst.sort();
 cout << "done sort!" << endl;
 for_each(lst.begin(), lst.end(), &PrintOut);
 return EXIT_SUCCESS;
}

listexample.cc

CSE333, Spring 2025L15: C++ STL

STL map

v One of C++’s associative containers: a key/value table,
implemented as a search tree
§ http://www.cplusplus.com/reference/stl/map/
§ General form:
§ Keys must be unique

• multimap allows duplicate keys

§ Efficient lookup (O(log n)) and insertion (O(log n))
• Access value via name[key]

§ Elements are type pair<key_type, value_type> and are
stored in sorted order (key is field first, value is field second)
• Key type must support less-than operator (<)

21

map<key_type, value_type> name;

http://www.cplusplus.com/reference/stl/map/

CSE333, Spring 2025L15: C++ STL

map Example

22

void PrintOut(const pair<Tracer,Tracer>& p) {
 cout << "printout: [" << p.first << "," << p.second << "]" << endl;
}

int main(int argc, char** argv) {
 Tracer a, b, c, d, e, f;
 map<Tracer,Tracer> table;
 map<Tracer,Tracer>::iterator it;

 table.insert(pair<Tracer,Tracer>(a, b));
 table[c] = d;
 table[e] = f;
 cout << "table[e]:" << table[e] << endl;
 it = table.find(c);

 cout << "PrintOut(*it), where it = table.find(c)" << endl;
 PrintOut(*it);

 cout << "iterating:" << endl;
 for_each(table.begin(), table.end(), &PrintOut);

 return EXIT_SUCCESS;
}

mapexample.cc

CSE333, Spring 2025L15: C++ STL

Unordered Containers (C++11)

v unordered_map, unordered_set
§ And related classes unordered_multimap,
unordered_multiset

§ Average case for key access is O(1)
• But range iterators can be less efficient than ordered map/set

§ See C++ Primer, online references for details

23

CSE333, Spring 2025L15: C++ STL

If we get here on Friday…

v Done with templates, STL, etc.

v Vector exercise (ex11) due Monday

v Next exercise (ex12) uses maps
§ Due next Wednesday
§ Release now so everyone can work on it over the weekend if they

want? (Might be helpful since midterm exam is next Fri.)

24

CSE333, Spring 2025L15: C++ STL

Extra Exercise #1

v Using the Tracer.h/.cc files from lecture:
§ Construct a vector of lists of Tracers

• i.e. a vector container with each element being a list of
Tracers

§ Observe how many copies happen J
• Use the sort algorithm to sort the vector
• Use the list.sort() function to sort each list

25

CSE333, Spring 2025L15: C++ STL

Extra Exercise #2

v Take one of the books from HW2’s test_tree and:
§ Read in the book, split it into words (you can use your hw2)
§ For each word, insert the word into an STL map

• The key is the word, the value is an integer
• The value should keep track of how many times you’ve seen the word,

so each time you encounter the word, increment its map element
• Thus, build a histogram of word count

§ Print out the histogram in order, sorted by word count
§ Bonus: Plot the histogram on a log-log scale (use Excel, gnuplot,

etc.)
• x-axis: log(word number), y-axis: log(word count)

26

