
CSE333, Spring 2025L12: C++ Constructor Insanity

C++ Constructor Insanity
CSE 333 Spring 2025

Instructor: Hal Perkins

Teaching Assistants:
Hannah Hempstead Lainey Jeon Hannah Jiang
Irene Lau Nathan Li Leanna Nguyen
Janani Raghavan Deeksha Vatwani Yiqing Wang
Jennifer Xu

CSE333, Spring 2025L12: C++ Constructor Insanity

Administrivia

v Next exercise released today, due Monday morning
§ Write a substantive class in C++ (but no dynamic allocation – yet)
§ Look at Complex.h/Complex.cc (this lecture) for ideas

v Homework 2 due next Thursday (5/1)
§ How’s it going? Any surprises, questions, problems?

v Please look at your exercise feedback, even if you get a 3
(= “gold star”). That means no serious problems, but
there often is feedback about things to fix in future work.
We’re seeing things recur that should be not happening
over and over. Let’s fix it!

2

CSE333, Spring 2025L12: C++ Constructor Insanity

“quiz”

{
Thing t(1,2) // ctr
Thing u = t; // copy ctr
Thing w(t); // copy ctr
t = w; // op=
} // dtr w, dtr u, dtr t
Integer n = 5; // ctr(5)
n = 7; // ctr(7), op=, dtr
 // (create temp, assign, delete temp)

3

CSE333, Spring 2025L12: C++ Constructor Insanity

Lecture Outline

v Constructors
v Copy Constructors
v Assignment
v Destructors
v An extended example

4

CSE333, Spring 2025L12: C++ Constructor Insanity

Constructors

v A constructor (ctor) initializes a newly-instantiated object
§ A class can have multiple constructors that differ in parameters

• Which one is invoked depends on how the object is instantiated

v Written with the class name as the method name:

§ C++ will automatically create a synthesized default constructor if
you have no user-defined constructors
• Takes no arguments and calls the default ctors on all non-“plain old

data” (non-POD) member variables
• Synthesized default ctor will fail if you have non-initialized const or

reference data members

Point(const int x, const int y);

5

CSE333, Spring 2025L12: C++ Constructor Insanity

Synthesized Default Constructor

6

class SimplePoint {
 public:
 // no constructors declared!
 int get_x() const { return x_; } // inline member function
 int get_y() const { return y_; } // inline member function
 double Distance(const SimplePoint& p) const;
 void SetLocation(const int x, const int y);

 private:
 int x_; // data member
 int y_; // data member
}; // class SimplePoint SimplePoint.h
#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x; // invokes synthesized default constructor
 return 0;
}

SimplePoint.cc

CSE333, Spring 2025L12: C++ Constructor Insanity

Synthesized Default Constructor

v If you define any constructors, C++ assumes you have
defined all the ones you intend to be available and will
not add any others

7

#include "SimplePoint.h"

// defining a constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // compiler error: if you define any
 // ctors, C++ will NOT synthesize a
 // default constructor for you.

 SimplePoint y(1, 2); // works: invokes the 2-int-arguments
 // constructor
}

CSE333, Spring 2025L12: C++ Constructor Insanity

Multiple Constructors (overloading)
#include "SimplePoint.h"

// default constructor
SimplePoint::SimplePoint() {
 x_ = 0;
 y_ = 0;
}

// constructor with two arguments
SimplePoint::SimplePoint(const int x, const int y) {
 x_ = x;
 y_ = y;
}

void foo() {
 SimplePoint x; // invokes the default constructor
 SimplePoint a[3]; // invokes the default ctor 3 times
 // (fails if no default ctor)
 SimplePoint y(1, 2); // invokes the 2-int-arguments ctor
}

8

CSE333, Spring 2025L12: C++ Constructor Insanity

Initialization Lists

v C++ lets you optionally declare an initialization list as part
of a constructor definition
§ Initializes fields according to parameters in the list
§ The following two are (nearly) identical:

9

// constructor with an initialization list
Point::Point(const int x, const int y) : x_(x), y_(y) {
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

Point::Point(const int x, const int y) {
 x_ = x;
 y_ = y;
 std::cout << "Point constructed: (" << x_ << ",";
 std::cout << y_<< ")" << std::endl;
}

CSE333, Spring 2025L12: C++ Constructor Insanity

Initialization vs. Construction

§ Data members in initializer list are initialized in the order they are
defined in the class, not by the initialization list ordering (!)
• Data members that don’t appear in the initialization list are default

initialized/constructed before body is executed

§ Initialization preferred to assignment to avoid extra steps of
default initialization (construction) followed by assignment

§ (and no, real code should never mix the two styles this way J)
10

class Point3D {
 public:
 // constructor with 3 int arguments
 Point3D(const int x, const int y, const int z) : y_(y), x_(x) {
 z_ = z;
 }

 private:
 int x_, y_, z_; // data members
}; // class Point3D

First, initialization list is applied.

Next, constructor body is executed.

CSE333, Spring 2025L12: C++ Constructor Insanity

Lecture Outline

v Constructors
v Copy Constructors
v Assignment
v Destructors
v An extended example

11

CSE333, Spring 2025L12: C++ Constructor Insanity

Copy Constructors

v C++ has the notion of a copy constructor (cctor)
§ Used to create a new object as a copy of an existing object

12

Point::Point(const int x, const int y) : x_(x), y_(y) { }

// copy constructor
Point::Point(const Point& copyme) {
 x_ = copyme.x_;
 y_ = copyme.y_;
}

void foo() {
 Point x(1, 2); // invokes the 2-int-arguments constructor

 Point y(x); // invokes the copy constructor
 // could also be written as "Point y = x;"
}

§ Initializer lists can also be used in copy constructors (preferred)

CSE333, Spring 2025L12: C++ Constructor Insanity

When Do Copies Happen?

v The copy constructor is invoked if:
§ You initialize an object from

another object of the same
type:

§ You pass a non-reference
object as a value parameter
to a function:

§ You return a non-reference
object value from a function:

13

void foo(Point x) { ... }

Point y; // default ctor
foo(y); // copy ctor

Point x; // default ctor
Point y(x); // copy ctor
Point z = y; // copy ctor

Point foo() {
 Point y; // default ctor
 return y; // copy ctor
}

CSE333, Spring 2025L12: C++ Constructor Insanity

Compiler Optimization

v The compiler sometimes uses a “return by value
optimization” or “move semantics” to eliminate
unnecessary copies
§ Sometimes you might not see a constructor get invoked when you

might expect it

14

Point foo() {
 Point y; // default ctor
 return y; // copy ctor? optimized?
}

Point x(1, 2); // two-ints-argument ctor
Point y = x; // copy ctor
Point z = foo(); // copy ctor? optimized?

CSE333, Spring 2025L12: C++ Constructor Insanity

Synthesized Copy Constructor

v If you don’t define your own copy constructor, C++ will
synthesize one for you
§ It will do a shallow copy of all of the fields (i.e. member variables)

of your class
§ Sometimes the right thing; sometimes the wrong thing

15

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x); // invokes synthesized copy constructor
 ...
 return 0;
}

CSE333, Spring 2025L12: C++ Constructor Insanity

Lecture Outline

v Constructors
v Copy Constructors
v Assignment
v Destructors
v An extended example

16

CSE333, Spring 2025L12: C++ Constructor Insanity

Assignment != Construction

v “=” is the assignment operator
§ Assigns values to an existing, already constructed object

§ How can you tell the difference between assignment
operator= and a copy constructor that uses =?
• Answer: are you creating/initializing a new object? If so, it’s a copy

constructor; if you are just updating an existing object it’s assignment

17

Point w; // default ctor
Point x(1, 2); // two-ints-argument ctor
Point y(x); // copy ctor
Point z = w; // copy ctor
y = x; // assignment operator

CSE333, Spring 2025L12: C++ Constructor Insanity

Overloading the “=” Operator

v You can choose to define the “=” operator
§ But there are some rules you should follow:

18

Point& Point::operator=(const Point& rhs) {
 if (this != &rhs) { // (1) always check against this
 x_ = rhs.x_;
 y_ = rhs.y_;
 }
 return *this; // (2) always return *this from op=
}

Point c; // default constructor
a = b = c; // works because = return *this
a = (b = c); // equiv. to above (= is right-associative)
(a = b) = c; // "works" because = returns a non-const

CSE333, Spring 2025L12: C++ Constructor Insanity

Synthesized Assignment Operator

v If you don’t define the assignment operator, C++ will
synthesize one for you
§ It will do a shallow copy of all of the fields (i.e. member variables)

of your class
§ Sometimes the right thing; sometimes the wrong thing

19

#include "SimplePoint.h"

... // definitions for Distance() and SetLocation()

int main(int argc, char** argv) {
 SimplePoint x;
 SimplePoint y(x);
 y = x; // invokes synthesized assignment operator
 return 0;
}

CSE333, Spring 2025L12: C++ Constructor Insanity

Lecture Outline

v Constructors
v Copy Constructors
v Assignment
v Destructors
v An extended example

20

CSE333, Spring 2025L12: C++ Constructor Insanity

Destructors

v C++ has the notion of a destructor (dtor)
§ Invoked automatically when a class instance is deleted, goes out

of scope, etc. (even via exceptions or other causes!)
§ Place to put your cleanup code – free any dynamic storage or

other resources owned by the object
§ Standard C++ idiom for managing dynamic resources

• Slogan: “Resource Acquisition Is Initialization” (RAII)

21

Point::~Point() { // destructor
 // do any cleanup needed when a Point object goes away
 // (nothing to do here since we have no dynamic resources)
}

CSE333, Spring 2025L12: C++ Constructor Insanity

Lecture Outline

v Constructors
v Copy Constructors
v Assignment
v Destructors
v An extended example

23

CSE333, Spring 2025L12: C++ Constructor Insanity

Complex Example Walkthrough

See:
Complex.h

Complex.cc

testcomplex.cc

v (Some details like friend functions and namespaces are
explained in more detail next lecture, but ideas should
make sense from looking at the code and explanations in
C++ Primer.)

24

CSE333, Spring 2025L12: C++ Constructor Insanity

Extra Exercise #1

v Modify your Point3D class from Lec 10 Extra #1
§ Disable the copy constructor and assignment operator
§ Attempt to use copy & assignment in code and see what error the

compiler generates
§ Write a CopyFrom() member function and try using it instead

• (See details about CopyFrom() in next lecture)

25

CSE333, Spring 2025L12: C++ Constructor Insanity

Extra Exercise #2

v Write a C++ class that:
§ Is given the name of a file as a constructor argument
§ Has a GetNextWord() method that returns the next

whitespace- or newline-separated word from the file as a copy of
a string object, or an empty string once you hit EOF

§ Has a destructor that cleans up anything that needs cleaning up

26

