
CSE333, Spring 2025L10: C++ Intro

C++ Intro
CSE 333 Spring 2025

Instructor: Hal Perkins

Teaching Assistants:
Hannah Hempstead Lainey Jeon Hannah Jiang
Irene Lau Nathan Li Leanna Nguyen
Janani Raghavan Deeksha Vatwani Yiqing Wang
Jennifer Xu

CSE333, Spring 2025L10: C++ Intro

Administrivia

v Exercise 7 posted yesterday evening, due Monday
§ POSIX I/O for reading directories and data from files
§ Read a directory and open/copy text files found there

• Copy exactly and only the bytes in the file(s). No extra output, no
“formatting”, no “titles”, no other transformations.

§ Good warm-up for…

v Homework 2 due in two weeks (5/1)
§ File system crawler, indexer, and search engine
§ Spec posted now
§ Starter files will be pushed out late today
§ Demo in class today!

 Now? 2

CSE333, Spring 2025L10: C++ Intro

Administrivia (added Monday)
v New exercise 8 out today – First C++ program: read a number and print its

factors
§ Due Wed. morning 10 am

v HW2 – how’s it look? Be sure to make good progress this week
§ And only use CSE linux machines (attu, workstation, VM)

v Git/gitlab repos: please keep it simple
§ Never checkout/branch/merge/rebase your primary repo

• (Well, maybe to recover a previous version of a file, but only if you know how to reset
the repo back to it’s proper state)

§ Main reason for checkout is to verify that a clone of your repo is correct after
finishing hwx. Don’t do that in your main copy. And delete the clone when you’re
done. Do not do additional work to fix/change things there.

§ (git is a swiss army knife with dozens of very sharp blades. Different organizations
have different conventions for using it. We’re deliberately being really, really simple
to minimize problems unlike, say, the way you might have used it in the past or you
and your friends use github or … .)

3

CSE333, Spring 2025L10: C++ Intro

Today’s Goals

v An introduction to C++
§ Some comparisons to C and shortcomings that C++ addresses
§ Give you a perspective on how to learn C++
§ Kick the tires and look at some code

v Advice: You must read related sections in the C++ Primer
§ It’s hard to learn the “why is it done this way” from reference

docs, and even harder to learn from random stuff on the web
§ Lectures and examples will introduce the main ideas, but aren’t

everything you’ll want need to understand
§ 3 hours of web searching might save you 20 min. of reading in the

Primer – but is that a good tradeoff?
§ And free access through UW libraries (O’Reilly books online)

4

CSE333, Spring 2025L10: C++ Intro

C

v We had to work hard to mimic encapsulation, abstraction
§ Encapsulation: hiding implementation details

• Used header file conventions and the “static” specifier to separate
private functions from public functions

• Cast structures to (void*) to hide implementation-specific details

§ Abstraction: associating behavior with encapsulated state
• Function that operate on a LinkedList were not really tied to the

linked list structure
• We passed a linked list to a function, rather than invoking a method

on a linked list instance

5

CSE333, Spring 2025L10: C++ Intro

C++

v A major addition is support for classes and objects!
§ Classes

• Public, private, and protected methods and instance variables
• (multiple!) inheritance

§ Polymorphism
• Static polymorphism: multiple functions or methods with the same

name, but different argument types (overloading)
– Works for all functions, not just class members

• Dynamic (subtype) polymorphism: derived classes can override
methods of parents, and methods will be dispatched correctly

6

CSE333, Spring 2025L10: C++ Intro

C

v We had to emulate generic data structures
§ Generic linked list using void* payload
§ Pass function pointers to generalize different “methods” for data

structures
• Comparisons, deallocation, pickling up state, etc.

7

CSE333, Spring 2025L10: C++ Intro

C++

v Supports templates to facilitate generic data types
§ Parametric polymorphism – same idea as Java generics, but

different in details, particularly implementation
§ To declare that x is a vector of ints: vector<int> x;
§ To declare that x is a vector of strings: vector<string> x;
§ To declare that x is a vector of (vectors of floats):
vector<vector<float>> x;

8

CSE333, Spring 2025L10: C++ Intro

C

v We had to be careful about namespace collisions
§ C distinguishes between external and internal linkage

• Use static to prevent a name from being visible outside a source
file (as close as C gets to “private”)

• Otherwise, name is global and visible everywhere

§ We used naming conventions to help avoid collisions in the global
namespace
• e.g. LLIteratorNext vs. HTIteratorNext, etc.

9

CSE333, Spring 2025L10: C++ Intro

C++

v Permits a module to define its own namespace!
§ The linked list module could define an “LL” namespace while the

hash table module could define an “HT” namespace
§ Both modules could define an Iterator class

• One would be globally named LL::Iterator
• The other would be globally named HT::Iterator

v Classes also allow duplicate names without collisions
§ Namespaces group and isolate names in collections of classes and

other “global” things (somewhat like Java packages)
• Entire C++ standard library is in a namespace std (more later…)

10

CSE333, Spring 2025L10: C++ Intro

C

v C does not provide any standard data structures
§ We had to implement our own linked list and hash table
§ As a C programmer, you often reinvent the wheel… poorly

• Maybe if you’re clever you’ll use somebody else’s libraries
• But C’s lack of abstraction, encapsulation, and generics means you’ll

probably end up tinkering with them or tweak your code to use them

11

CSE333, Spring 2025L10: C++ Intro

C++

v The C++ standard library is huge!
§ Generic containers: bitset, queue, list, associative array

(including hash table), deque, set, stack, and vector
• And iterators for most of these

§ A string class: hides the implementation of strings
§ Streams: allows you to stream data to and from objects,

consoles, files, strings, and so on
§ And more…

12

CSE333, Spring 2025L10: C++ Intro

C

v Error handling is a pain
§ Have to define error codes and return them
§ Customers have to understand error code conventions and need

to constantly test return values
§ e.g. if a() calls b(), which calls c()

• a depends on b to propagate an error in c back to it

13

CSE333, Spring 2025L10: C++ Intro

C++

v Supports exceptions!
§ try / throw / catch
§ If used with discipline, can simplify error processing

• But, if used carelessly, can complicate memory management
• Consider: a() calls b(), which calls c()

– If c() throws an exception that b() doesn’t catch, you might not get a
chance to clean up resources allocated inside b()

§ But much C++ code still needs to work with C & old C++ libraries
that are not exception-safe, so still uses return codes, exit(), etc.
• We won’t use (and Google style guide doesn’t use either)

14

CSE333, Spring 2025L10: C++ Intro

Some Tasks Still Hurt in C++

v Memory management
§ C++ has no garbage collector

• You have to manage memory allocation and deallocation and track
ownership of memory

• It’s still possible to have leaks, double frees, and so on

§ But there are some things that help
• “Smart pointers”

– Classes that encapsulate pointers and track reference counts
– Deallocate memory when the reference count goes to zero

• C++’s destructors permit a pattern known as “Resource Allocation Is
Initialization” (RAII) (terrible name but super useful idea)
– Useful for releasing memory, locks, database transactions, and more

15

CSE333, Spring 2025L10: C++ Intro

Some Tasks Still Hurt in C++

v C++ doesn’t guarantee type or memory safety
§ You can still:

• Forcibly cast pointers between incompatible types
• Walk off the end of an array and smash memory
• Have dangling pointers
• Conjure up a pointer to an arbitrary address of your choosing

16

CSE333, Spring 2025L10: C++ Intro

C++ Has Many, Many Features

v Operator overloading
§ Your class can define methods for handling “+”, “->”, etc.

v Object constructors, destructors
§ Particularly handy for stack-allocated objects

v Reference types
§ True call-by-reference instead of always call-by-value

v Advanced Objects
§ Multiple inheritance, virtual base classes, dynamic dispatch

17

CSE333, Spring 2025L10: C++ Intro

How to Think About C++

18

Set of styles
and ways to

use C++

Set of styles
and ways to

use C

Good styles
and robust
engineering

practices

Style
guides

CSE333, Spring 2025L10: C++ Intro

Or…

19

In the hands of a disciplined
programmer, C++ is a

powerful tool

But if you’re not so
disciplined about how you

use C++…

CSE333, Spring 2025L10: C++ Intro

Hello World in C

v You never had a chance to write this!
§ Compile with gcc:

§ You should be able to describe in detail everything in this code

#include <stdio.h> // for printf()
#include <stdlib.h> // for EXIT_SUCCESS

int main(int argc, char** argv) {
 printf("Hello, World!\n");
 return EXIT_SUCCESS;
}

helloworld.c

gcc -Wall -g -std=c17 -o hello helloworld.c

20

CSE333, Spring 2025L10: C++ Intro

Hello World in C++

v Looks simple enough…
§ Compile with g++ instead of gcc:

§ Let’s walk through the program step-by-step to highlight some
differences

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

g++ -Wall -g -std=c++17 -o helloworld helloworld.cc

helloworld.cc

21

CSE333, Spring 2025L10: C++ Intro

Hello World in C++

v iostream is part of the C++ standard library
§ Note: you don’t write “.h” when you include C++ standard library

headers
• But you do for local headers (e.g. #include "ll.h")

§ iostream declares stream object instances in the “std”
namespace
• e.g. std::cin, std::cout, std::cerr

22

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

CSE333, Spring 2025L10: C++ Intro

Hello World in C++

v cstdlib is the C standard library’s stdlib.h
§ Nearly all C standard library functions are available to you

• For C header foo.h, you should #include <cfoo>

§ We include it here for EXIT_SUCCESS, as usual

23

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

CSE333, Spring 2025L10: C++ Intro

Hello World in C++

v std::cout is the “cout” object instance declared by
iostream, living within the “std” namespace
§ C++’s name for stdout
§ std::cout is an object of class ostream

• http://www.cplusplus.com/reference/ostream/ostream/

§ Used to format and write output to the console
§ The entire standard library is in the namespace std

24

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

http://www.cplusplus.com/reference/ostream/ostream/

CSE333, Spring 2025L10: C++ Intro

Hello World in C++

v C++ distinguishes between objects and primitive types
§ Primitive types include the familiar ones from C:
char, short, int, long, float, double, etc.

§ C++ also defines bool as a primitive type (woo-hoo!)
• Use it!
• (but bool and int values silently convert types for compatiblity)

25

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

CSE333, Spring 2025L10: C++ Intro

Hello World in C++

v “<<” is an operator defined by the C++ language
§ Defined in C as well: usually it bit-shifts integers (in C/C++)
§ C++ allows classes and functions to overload operators!

• Here, the ostream class overloads “<<”
• i.e. it defines different member functions (methods) that are invoked

when an ostream is the left-hand side of the << operator

26

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

CSE333, Spring 2025L10: C++ Intro

Hello World in C++

v ostream has many different methods to handle <<
§ The functions differ in the type of the right-hand side (RHS) of <<
§ e.g. if you do std::cout << "foo"; , then C++ invokes
cout’s function to handle << with RHS char*

27

std::cout << "foo";

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

CSE333, Spring 2025L10: C++ Intro

Hello World in C++

v The ostream class’ member functions that handle <<
return a reference to themselves
§ When std::cout << "Hello, World!"; is evaluated:

• A member function of the std::cout object is invoked
• It buffers the string "Hello, World!" for the console
• And it returns a reference to std::cout

28

std::cout << "Hello, World!";

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

CSE333, Spring 2025L10: C++ Intro

Hello World in C++

v Next, another member function on std::cout is
invoked to handle << with RHS std::endl
§ std::endl is a pointer to a “manipulator” function

• This manipulator function writes newline ('\n') to the ostream it
is invoked on and then flushes the ostream’s buffer

• This enforces that something is printed to the console at this point

29

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

CSE333, Spring 2025L10: C++ Intro

Wow…

v You should be surprised and scared at this point
§ C++ makes it easy to hide a significant amount of complexity

• It’s powerful, but really dangerous
• Once you mix everything together (templates, operator overloading,

method overloading, generics, multiple inheritance), it can get really
hard to know what’s actually happening!

30

#include <iostream>
#include <cstdlib>

int main(int argc, char** argv) {
 std::cout << "Hello, World!" << std::endl;
 return EXIT_SUCCESS;
}

helloworld.cc

CSE333, Spring 2025L10: C++ Intro

Let’s Refine It a Bit

v C++’s standard library has a std::string class
§ Include the string header to use it

• Seems to be automatically included in iostream on CSE Linux
environment (C++17) – but include it explicitly anyway if you use it

§ http://www.cplusplus.com/reference/string/

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

31

http://www.cplusplus.com/reference/string/

CSE333, Spring 2025L10: C++ Intro

Let’s Refine It a Bit

v The using keyword introduces a namespace (or part of)
into the current region
§ using namespace std; imports all names from std::
§ using std::cout; imports only std::cout

(used as cout)

32

using namespace std;

using std::cout;

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

CSE333, Spring 2025L10: C++ Intro

Let’s Refine It a Bit

v Benefits of
§ We can now refer to std::string as string, std::cout

as cout, and std::endl as endl
• Google style guide says never use using namespace, only using

for individual items; but using namespace std; is ok for 333
exercises

33

using namespace std;

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

CSE333, Spring 2025L10: C++ Intro

Let’s Refine It a Bit

v Here we are instantiating a std::string object on the
stack (an ordinary local variable)
§ Passing the C string "Hello, World!" to its constructor

method
§ hello is deallocated (and its destructor invoked) when main

returns

34

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

CSE333, Spring 2025L10: C++ Intro

Let’s Refine It a Bit

v The C++ string library also overloads the << operator
§ Defines a function (not an object method) that is invoked when

the LHS is ostream and the RHS is std::string
• http://www.cplusplus.com/reference/string/string/operator<</

35

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello, World!");
 cout << hello << endl;
 return EXIT_SUCCESS;
}

helloworld2.cc

http://www.cplusplus.com/reference/string/string/operator%3c%3c/

CSE333, Spring 2025L10: C++ Intro

String Concatenation

v The string class overloads the “+” operator
§ Creates and returns a new string that is the concatenation of the

LHS and RHS

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello");
 hello = hello + ", World!";
 cout << hello << endl;
 return EXIT_SUCCESS;
}

concat.cc

36

CSE333, Spring 2025L10: C++ Intro

String Assignment

v The string class overloads the “=” operator
§ Copies the RHS and replaces the string’s contents with it

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello");
 hello = hello + ", World!";
 cout << hello << endl;
 return EXIT_SUCCESS;
}

concat.cc

37

CSE333, Spring 2025L10: C++ Intro

String Manipulation

v This statement is complex!
§ First “+” creates a string that is the concatenation of hello’s

current contents and ", World!"
§ Then “=” creates a copy of the concatenation to store in hello
§ Without the syntactic sugar:

• hello.operator=(hello.operator+(", World!"));

#include <iostream>
#include <cstdlib>
#include <string>

using namespace std;

int main(int argc, char** argv) {
 string hello("Hello");
 hello = hello + ", World!";
 cout << hello << endl;
 return EXIT_SUCCESS;
}

concat.cc

38hello.operator=(hello.operator+(", World!"));

CSE333, Spring 2025L10: C++ Intro

Stream Manipulators

v iomanip defines a set of stream manipulator functions
§ Pass them to a stream to affect formatting

• http://www.cplusplus.com/reference/iomanip/
• http://www.cplusplus.com/reference/ios/

#include <iostream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char** argv) {
 cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;
 cout << hex << 16 << " " << 13 << endl;
 cout << dec << 16 << " " << 13 << endl;
 return EXIT_SUCCESS;
}

manip.cc

39

http://www.cplusplus.com/reference/iomanip/
http://www.cplusplus.com/reference/ios/

CSE333, Spring 2025L10: C++ Intro

Stream Manipulators

v setw(x) sets the width of the next field to x
§ Only affects the next thing sent to the output stream (i.e. it is not

persistent)

#include <iostream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char** argv) {
 cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;
 cout << hex << 16 << " " << 13 << endl;
 cout << dec << 16 << " " << 13 << endl;
 return EXIT_SUCCESS;
}

manip.cc

40

CSE333, Spring 2025L10: C++ Intro

Stream Manipulators

v hex, dec, and oct set the numerical base for integer
output to the stream
§ Stays in effect until you set the stream to another base (i.e. it is

persistent)

#include <iostream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main(int argc, char** argv) {
 cout << "Hi! " << setw(4) << 5 << " " << 5 << endl;
 cout << hex << 16 << " " << 13 << endl;
 cout << dec << 16 << " " << 13 << endl;
 return EXIT_SUCCESS;
}

manip.cc

41

CSE333, Spring 2025L10: C++ Intro

C and C++

v C is (roughly) a subset of C++
§ You can still use printf – but bad style in ordinary C++ code
§ Can mix C and C++ idioms if needed to work with existing code,

but avoid mixing if you can
• Use C++(17)

#include <cstdio>
#include <cstdlib>

int main(int argc, char** argv) {
 printf("Hello from C!\n");
 return EXIT_SUCCESS;
}

helloworld3.cc

42

CSE333, Spring 2025L10: C++ Intro

Reading

v std::cin is an object instance of class istream
§ Supports the >> operator for “extraction”

• Can be used in conditionals – (std::cin>>num) is true if
successful

§ Has a getline() method and methods to detect and clear
errors – explore the docs as you use it for the next exercise!

#include <iostream>
#include <cstdlib>

using namespace std;

int main(int argc, char** argv) {
 int num;
 cout << "Type a number: ";
 cin >> num;
 cout << "You typed: " << num << endl;
 return EXIT_SUCCESS;
}

echonum.cc

43

CSE333, Spring 2025L10: C++ Intro

Extra Exercise #1

v Write a C++ program that uses stream to:
§ Prompt the user to type 5 floats
§ Prints them out in opposite order with 4 digits of precision

45

