W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

Final C Details
CSE 333 Spring 2025

Instructor: Hal Perkins

Teaching Assistants:

Hannah Hempstead Lainey Jeon Hannah Jiang
lrene Lau Nathan Li Leanna Nguyen
Janani Raghavan Deeksha Vatwani Yiging Wang

Jennifer Xu



CSE333, Spring 2025

W UNIVERSITY of WASHINGTON LO6: C Details

Administrivia

+» Today: C wrapup, makefiles

+» New exercise 5 posted today, due Monday morning

= Rework ex4 to use header guards and internal linkage (these
slides) and add a Makefile (2" half of class today)

" Fine to use ex4 solution code (including sample solution, posted
after class) and example code from lecture (esp. Makefiles) in

your solution

+ And you should be well along on hw1 by now...



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

HW1 hints

» Woatch that HashTable. c doesn’t violate the modularity of
LinkedList.h (i.e., don’t access private/hidden
implementation details of linked lists)

= Watch for pointers to local (stack) variables (Ox7fff... addresses)

= Symptom: variables appear to spontaneously change values for no reason

» Keep track of types of things — draw memory diagrams
" |s this variable a Thing, Thing*, Thing**, typedefed Thing*?

» Advice: use git add/commit/push often to save your work
" Not one massive commit at the end!
= Don’t push .o and executable files or other build products

« Clutter, makes it harder to do clean rebuilds, not portable, etc.

" Don’t use git as a file transfer program (don’t edit on one machine,
commit/push/pull to another, compile, and repeat every few minutes)



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

Yet more hw1l hints

» Debugging
= Use a debugger (e.g. gdb) if you're getting segfaults — fix reality!
= Write and run little tests to track down problems (don’t kill lots of
time trying to debug large test_suite code)

= gdb hint: What if Verify333 fails? How can you debug it?
Answer: look at the Verify333 macro (#define), figure out
what function it calls on failure, and put a breakpoint there
» Late days: don’ttag hwl-final until you are really
ready (then check your work — clone repo — and re-read
assignment to be sure you didn’t miss anything!)

» Extra Credit: if you add unit tests, put them in a new file
and adjust the extra credit Makefile and be sure to tag the
extra credit part with hwl-bonus



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

Lecture Outline

+ Header Guards and Preprocessor Tricks

+ Visibility of Symbols

" extern, static



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

An #include Problem

+» What happens when we compile foo.c?

struct pair { [ #include "pair.h" 1
int a, b;
}; // a useful function
) struct pair* make pair(int a, 1int b);
pair.h . — J

util.h

(#include "pair.h"
#include "util.h"

int main(int argc, char** argv) {
// do stuff here

return EXIT SUCCESS;

&} )
foo.c




W UNIVERSITY of WASHINGTON LO6: C Details

An #include Problem

\/
000

\/
000

What happens when we compile foo.c?

bash$ gcc -Wall -g -o foo foo.c
In file included from util.h:1:0,
from foo.c:2:

pair.h:1:8: error: redefinition of 'struct pair'

struct pair { int a, b; };

A

In file included from foo.c:1:0:

pair.h:1:8: note: originally defined here
struct pair { int a, b; };

A

foo.cincludes pair.h twice!

= Second timeisindirectlyviautil.h foo.c

= Struct definition shows up twice

- Can see using cpp

CSE333, Spring 2025

pair.n

util.h



W UNIVERSITY of WASHINGTON

Header Guards

LO6: C Details

+ A standard C Preprocessor trick to deal with this

= Uses macro definition (#def ine) in combination with
conditional compilation (# 1 fndef and #endi f)

.

7

#ifndef PAIR H
#define PAIR H

struct pair {
int a, b;

b g

#endif  // PAI

R H_

Y,

pair.h

CSE333, Spring 2025

(#ifndef UTIL H_ A
#define UTIL H
#include "pair.h"
// a useful function
struct pair* make pair(int a, int b);
#endif // UTIL H
_ _ J
util.h



W UNIVERSITY of WASHINGTON

LO6: C Details

CSE333, Spring 2025

Other Preprocessor Tricks

+» A way to deal with “magic numbers” (constants)

int globalbuffer[1000];

volid eircalc(float rad,
float* circumf,
float* area) {
*circumf = rad * 2.0 * 3.1415;
*area = rad * 3.1415 * 3.1415;

J

Bad code
(littered with magic constants)

(%define BUFSIZE 1000
#define PI 3.14159265359

int globalbuffer [BUFSIZE];

volid ecircalc(float rad,
float* circumf,
float* area) {
rad * 2.0 * PI;
rad * BI * PI;

*circumf =
*area =

\}

_/

Better code



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

Macros

< YOU can pass arguments to macros

[ 4define ODD(x) ((x) % 2 != 0) | [ )
void foo () { C&Ip void foo () {
if ( ODD(5) ) > ( ((5) % 2 1= 0) )
printf ("5 is odd!\n"); printf ("5 is odd!\n");
) ) ! )
+» Beware of operator precedence issues!
= Use parentheses
[ #define ODD(x) ((x) % 2 != 0) ) [ B
#define WEIRD(x) x % 2 !=0
2R
ODD (5 + 1); ((5 + 1) %2 1=0);
WEIRD (5> + 1); 5+ 1 % 2 !'= 0;
\ Y \. J

10



W UNIVERSITY of WASHINGTON

LO6: C Details

Conditional Compilation

% You can change what gets compiled

" |n this example, #define TRACE before #ifdef toinclude
debug printfsin compiled code

(#ifdef TRACE

#define EXIT (
felse

#define EXIT (
#fendif

// print n
volid pr(int n

printf ("\n
EXIT ("pxr") ;

)

ENTER ("pr") ;

#define ENTER(f) printf ("Entering %s\n", f)

f) printf("Exiting %s\n", f)

#define ENTER(f)

f)

) |

sd\n", n);

J

ifdef.c

CSE333, Spring 2025

11



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

Defining Symbols

+» Besides #defines in the code, preprocessor values can
be given as part of the gcc command:

[bash$ gcc —-Wall -g -DTRACE -o 1fdef 1fdef.c ]

% assert can be controlled the same way — defining NDEBUG
causes assert to expand to “empty”

" |t'samacro—see assert.h

[bash$ gcc —-Wall -g -DNDEBUG -o faster useassert.c ]

12



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

Lecture Outline

+» Header Guards and Preprocessor Tricks

+ Visibility of Symbols

" extern, static

14



W UNIVERSITY of WASHINGTON LO6: C Details

CSE333, Spring 2025

Namespace Problem

+ |f we define a global variable named “counter” in one C
file, is it visible in a different C file in the same program?

= Yes, if you use external linkage

- The name “counter” refers to the same variable in both files
- The variable is defined in one file and declared in the other(s)

- When the program is linked, the symbol resolves to one location

= No, if you use internal linkage

« The name “counter” refers to a different variable in each file

- The variable must be defined in each file

- When the program is linked, the symbols resolve to two locations

15



W UNIVERSITY of WASHINGTON

LO6: C Details

External Linkage

+» extern makes a declaration of something externally-

CSE333, Spring 2025

visible
f#include <stdio.h> )
// A global variable, defined and
// 1nitialized here in foo.c.
// It has external linkage by
// default.
int counter = 1;
int main(int argc, char** argv) {
printf ("$d\n", counter);
bar () ;
printf ("$d\n", counter);
return EXIT SUCCESS;
J y
foo.c

(#include <stdio.h> )
// "counter" is defined and
// initialized in foo.c.
// Here, we declare it, and
// specify external linkage
// by using the extern specifier.
extern int counter;
void bar () {
counter++;
printf (" (b) : counter = %d\n",
counter) ;
. y
bar.c

16



W UNIVERSITY of WASHINGTON

LO6: C Details

CSE333, Spring 2025

Internal Linkage

+» static (in the global context) restricts a definition to

visibility within that file

(#include <stdio.h> R

// A global variable, defined and
// initialized here in bar.c.

// We force internal linkage by
// using the static specifier.

static int counter = 100;
void bar () {
counter++;
printf (" (b) : counter = %d\n",
counter) ;
}
_ W,

f#include <stdio.h> )
// A global variable, defined and
// 1nitialized here in foo.c.
// We force internal linkage by
// using the static specifier.
static int counter = 1;
int main(int argc, char** argv) {
printf ("$d\n", counter);
bar () ;
printf ("$d\n", counter);
return EXIT SUCCESS;
J y
foo.c

bar.c

17



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

Function Visibility

(// By using the static specifier, we are indicating R
// that foo() should have internal linkage. Other
// .c files cannot see or invoke foo().
static int foo(int x) {
return x*3 + 1;
}
// Bar 1s "extern'" by default. Thus, other .c files
// could declare our bar() and call 1it.
int bar(int x) {
return 2*foo (x);
bar.c ) )
(#include <stdio.h> h
extern int bar (int x); // "extern" is default, usually omit
// should be in .h file, but effect 1s same
int main(int argc, char** argv) {
printf ("$d\n", bar(5));
) return EXIT SUCCESS;
main.cC o

\Z A




W UNIVERSITY of WASHINGTON LO6: C Details

CSE333, Spring 2025

Linkage Issues

+ Every global (variables and functions) is extern by
default

= Unless you add the static specifier, if some other module uses
the same name, you'll end up with a collision!

- Best case: compiler (or linker) error

- Worst case: stomp all over each other

+ |t’s good practice to:
= Use static to “defend” your globals
- Hide your private stuff!

" Place external declarations in a module’s header file

- Header is the public specification

19



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

Additional C Topics

+» Teach yourself!

" man pages are your friend!

= String library functions in the C standard library

« #include <string.h>
— strlen(), strcpy(), strdup(), strcat(), strcmp(), strchr(), strstr(), ...

« #include <stdlib.h>or #include <stdio.h>
— atoi(), atof(), sprint(), sscanf()

"= How to declare, define, and use a function that accepts a variable-
number of arguments (varargs)

®= ynions and what they are good for
= enums and what they are good for
" Pre- and post-increment/decrement

= Harder: the meaning of the “volatile” storage class N



W UNIVERSITY of WASHINGTON LO6: C Details CSE333, Spring 2025

Extra Exercise #1

+» Write a program that:

= Prompts the user to input a string (use fgets () )

- Assume the string is a sequence of whitespace-separated integers
(e.g. "5555 1234 4 5543")

= Converts the string into an array of integers
= Converts an array of integers into an array of strings

- Where each element of the string array is the binary representation
of the associated integer

" Prints out the array of strings

22



