
 CSE 333 25wi Final Exam 3/18/24

 Page 1 of 18

Name ______________________________________ UW netid ___________@uw.edu
Please print legibly

There are 7 questions worth a total of 110 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.
However, you may have two 5x8 notecards or the equivalent with any hand-written notes
you wish written on both sides.

There is a blank page at the end with extra space for your answers if you need more
room. It is after all the questions but before the detachable sheet with reference
information.

After the extra blank pages for answers, there are two pages of assorted reference
information (much of which you probably won’t need). You should remove this sheet of
paper from the exam for convenience. These pages will not be scanned or graded.

Do not remove any pages from the middle of the exam.

If you do not remember the exact syntax for something, make the best attempt you can.
We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for some answers – we
tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin

Score _________________ / 110

1. ______ / 20

2. ______ / 18

3. ______ / 14

4. ______ / 18

5. ______ / 18

6. ______ / 20

7. ______ / 2

 CSE 333 25wi Final Exam 3/18/24

 Page 2 of 18

Question 1. (20 points) A little C++/STL programming. The Seahawks, like most
American football teams, have an extensive data analytics department, but for some
reason they don’t have anything that can keep track of the points scored by individual
players. Since you’ve just finished CSE 333 and should be able to come up with a
suitable program, they have asked for your help.

The program should accept input to do the following operations:

1. add player points : add an entry with the given number of points for the specified
player. If the player already exists in the stored data (capitalization and exact
spelling must match), append the new points to their existing list of points.

2. display : display the list of all players and the lists of points scored. The
players can be listed in any order, but the scores for each player must be displayed
in the order entered into the program.

3. exit : terminate the program

Example: Here is a sequence of input commands and the output produced by the
program. The output is shown in underlined italics for illustration. Your program should
not use any special fonts or styles.

add Smith 30
add Howell 28
add Smith 35
add Howell 25
add Williams 40
display
Smith: 30 35
Howell: 28 25
Williams: 40
exit

Since this is an exam question, you may go ahead and assume that input operations like
reading strings or numbers will succeed. You do need to handle the error case where the
input line starts with something other than add, display, or exit, and if that happens,
just continue on to read the next command after producing a suitable error message on
cerr. You do not need to worry about resynchronizing the input – just report the error
and attempt to read the next input if there is additional data.

A skeleton program (starter code) is provided on the next page and you should fill in your
code in appropriate places to complete the program. You may assume all necessary
system library #include statements are already provided, but you do need to declare
appropriate variables to hold the data as you read and process it.

(continued on next page)

 CSE 333 25wi Final Exam 3/18/24

 Page 3 of 18

Question 1. (cont.) Fill in the skeleton (starter) code below with your solution:

assume all necessary libraries are #included
using namespace std;

int main() {
 // add variable declarations here

 while (true) {
 cin >> command;

 if (command == "add") {

 } else if (command == "display") {

 } else if (command == "exit") {

 }
 else {

 }
 }
 return _____________________;}

 CSE 333 25wi Final Exam 3/18/24

 Page 4 of 18

Question 2. (18 points) Yet another whacky inheritance question. As usual this program
mostly compiles and mostly executes with no errors. Headers and using namespace
std; omitted to save space.

class Onion {
 public:
 void f1() { cout << "Onion::f1" << endl; }
 virtual void f2() { cout << "Onion::f2" << endl; }
};

class Ogre : public Onion {
 public:
 virtual void f1() { cout << "Ogre::f1" << endl; }
 void f3() { cout << "Ogre::f3" << endl; }
};

class Shrek : public Ogre {
 public:
 virtual void f3() { cout << "Shrek::f3" << endl; }
};

int main() {
 Onion* aa = new Onion();
 Ogre* bb = new Ogre();
 Onion* ab = bb;
 Onion* ac = new Shrek();
 // HERE
 return EXIT_SUCCESS;
}

Continue with the problem on the next page. Do not remove this page from the exam.

 CSE 333 25wi Final Exam 3/18/24

 Page 5 of 18

Question 2. (cont.) (a) (8 points) Complete the diagram below to show all of the
variables, objects, virtual method tables (vtables) and functions in this program. Parts of
the diagram are supplied for you.

 (b) (10 points, 2 points each) For each of the following function calls, what happens if
we replace the line HERE in the main program with this particular function call? If it
compiles and executes successfully write down the output produced. If an error occurs,
indicate what the error is and whether it is a compile-time or runtime error.

i) aa->f2();

ii) ab->f2();

iii) ac->f3();

iv) bb->f1();

v) ab->f1();

Onion vtbl

Onion::f1

Onion::f2

Ogre::f1

Ogre::f3

Shrek::f3

vtables (might have way
more slots than needed)

Ogre vtbl

Shrek vtbl

main() variables
(add pointers as needed)

aa

functionsobjects (add objects
& pointers as needed)

bb

ab

ac

 CSE 333 25wi Final Exam 3/18/24

 Page 6 of 18

Question 3. (14 points) Smart pointers. C++ implementations cannot provide garbage
collection because the language allows unrestricted casting and changing of pointer
values. But the libraries do provide smart pointers, which can help with memory
management when used appropriately.

Consider the following program that uses smart pointers (#includes and using
namespace std omitted to save space)

class Resource {
public:
 Resource(int resourceId) : id_(resourceId) {
 std::cout << id_ << " ctor" << std::endl;
 }
 ~Resource() {
 std::cout << id_ << " dtor" << std::endl;
 }
private:
 int id_;
}; // end class Resource

int main() {
 std::unique_ptr<Resource> r1(new Resource(1));

 { // start new scope
 std::cout << "-- 1 --" << std::endl;
 std::shared_ptr<Resource> r2(new Resource(2));
 std::shared_ptr<Resource> r3 = std::move(r1);

 { // start new scope
 std::cout << "-- 2 --" << std::endl;
 std::shared_ptr<Resource> r4 = r2;
 std::shared_ptr<Resource> r5(new Resource(3));
 r3 = nullptr;
 } // close scope

 std::cout << "-- 3 --" << std::endl;
 r2 = nullptr;
 } // close scope
 if (r1) {
 std::cout << "r1 is valid" << std::endl;
 } else {
 std::cout << "r1 is nullptr" << std::endl;
 }

 return EXIT_SUCCESS;
}

Write the output produced by this program on the next page.

 CSE 333 25wi Final Exam 3/18/24

 Page 7 of 18

Question 3. (cont) Below, write the output produced when we compile and execute the
program on the previous page. The program compiles and executes without errors or
memory leaks. (#includes and using namespace std; omitted to save space)

 CSE 333 25wi Final Exam 3/18/24

 Page 8 of 18

Question 4. (18 points) Templates. Consider the following program, which defines a
template Box that stores a vector of items of some type T, then creates two of these
Boxes and stores some numbers and strings in them:

#include <iostream>
#include <vector>
#include <string>
#include <cstdlib>

template <typename T>
class Box {
 private:
 std::vector<T> items_;
 public:
 Box() { std::cout << "Generic box" << std::endl; }
 void add(T item) {
 items_.push_back(item);
 std::cout << "Added item" << std::endl;
 }
 T get(int i) { return items_[i]; }
 int size() const { return items_.size(); }
};

int main() {
 Box<double> b1;
 Box<std::string> bs;

 b1.add(3.14);
 b1.add(2.718);
 b1.add(-1.5);
 bs.add("hello cse333");

 return EXIT_SUCCESS;
}

Answer questions about this program on the following page.

 CSE 333 25wi Final Exam 3/18/24

 Page 9 of 18

Question 4. (cont.) (a) (6 points) What output is produced when we run the given
program? (It does compile and execute with no errors). This answer is very simple.

(b) (12 points) The creators of the Box template did not provide any way to print the
contents of a Box, although there are member functions that could be used to implement
this. We would like to add a Print_box function, but with the constraint that we are
not allowed to modify the original Box class template. Instead, we need to define a
Print_box<T>(b) function template that will print the contents of a Box b whose
elements have type T. You should give the definition of this function template below,
and then show the output that is produced when we add Print_box(b1); and
Print_box(bs); at the end of the original main function.

Footnotes: You should print the items to the standard cout stream and you may assume that the
elements x of type T in the Box can be printed using cout<<x. Your output should include one
space after each element printed, and should include a endl operation after the last item printed
to end the output line.

Definition of Box<T> template:

Output produced by Print_box(b1); and Print_box(bs); when added to the
end of main:

 CSE 333 25wi Final Exam 3/18/24

 Page 10 of 18

Question 5. (18 points) Client socket programming. One of your friends has been
impressed with how you have been able to send and receive data over the network with
relatively simple socket programming. They have decided to give it a try and have come
up with the code on the next page.

Unfortunately, it doesn’t quite work and they have come to you for help. For this
problem, take a look at the code, find the problems, and fix them (there aren’t that many).
You should annotate the existing code both to explain the problem(s), and then cross out
or rewrite code as needed to fix things. Feel free to draw arrows showing how to move
code around if needed, but be sure it is clear to the reader what you mean.

You should assume that all functions always succeed – ignore error handling for this
question. Further, you can assume that the hints data structure shown here will work
with the call to getaddrinfo, that the first address returned by getaddrinfo
works, and we don’t need to search that linked list returned by getaddrinfo to find an
address that does work.

Also assume that WrappedRead() and WrappedWrite(), if they appear in the
code, work just like the read() and write() POSIX functions, except that they deal
with error conditions, particularly looping to retry the read or write if EINTR or EAGAIN
errors occur.

Also assume that all necessary #include headers are present for needed library files
and that a using namespace std; declaration appears at the top of the code.

Reminder: there is some potentially useful reference information at the end of the exam.

Fix the code on the next page. You can use the rest of this page for scratch space or for
notes about your changes to the code if you wish.

If you need additional space, you can always continue work on the overflow pages at the
end of the exam. Just be sure to indicate on the next page that your work is continued on
the overflow pages, then label your work there so the graders can find it.

(Continued on next page)	

 CSE 333 25wi Final Exam 3/18/24

 Page 11 of 18

Question 5. (cont.) Fix this code so it will connect to a server whose DNS name is given
by argv[1] and port number given by argv[2], write the string argv[3] to the
server, then close the connection when that’s done.

// #include headers omitted to save space
using namespace std;
int main(int argc, char **argv) {
 unsigned short port = 0;
 struct sockaddr_storage addr;
 size_t addrlen;
 struct addrinfo hints, *results;

 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;

 retval = getaddrinfo(argv[1], nullptr, &hints, &results);
 if (results->ai_family == AF_INET) {
 struct sockaddr_in *v4addr =
 (struct sockaddr_in *)results->ai_addr;
 v4addr->sin_port = htons(port);
 } else if (results->ai_family == AF_INET6) {
 struct sockaddr_in6 *v6addr =
 (struct sockaddr_in6 *) results->ai_addr;
 v6addr->sin6_port = htons(port);
 }

 int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

 // write the string given as argv[3] to the server
 WrappedWrite(socket_fd, argv[3], strlen(argv[3])+1);

 return EXIT_SUCCESS;
}	

 CSE 333 25wi Final Exam 3/18/24

 Page 12 of 18

Question 6. (20 points) Concurrency: bug or feature? Consider the following program
that creates a pair of threads and executes them. Assume that all necessary #include
headers are supplied – they are omitted here to save space. This program does compile
and execute without errors.

// global variables
int arr[10] = {0}; // initialize all elements to 0
int idx = 0;

void *worker(void *arg) {
 int thread_id = *(int *)arg;
 for (int i = 0; i < 5; i++) {
 int curr_idx = idx;
 arr[curr_idx] += thread_id;
 idx = curr_idx + 1;
 }
 return NULL;
}

int main() {
 pthread_t t1, t2;
 int id1 = 1, id2 = 2;

 pthread_create(&t1, NULL, worker, &id1);
 pthread_create(&t2, NULL, worker, &id2);

 pthread_join(t1, NULL);
 pthread_join(t2, NULL);

 for (int i = 0; i < 10; i++) {
 printf("%d ", arr[i]);
 }
 printf("\n");

 return EXIT_SUCCESS;
}

When we run this program, it starts separate threads that each assign values to the global
array and idx variables. Then the program waits for all threads to finish, and prints the
final values of the array elements.

Answer

 questions

 about this code

 on the next page….

 CSE 333 25wi Final Exam 3/18/24

 Page 13 of 18

Question 6. (cont.) (a) (4 points) What output would the program print if the threads
were executed sequentially – first thread t1 then thread t2 – and not concurrently?

(b) (6 points) When the threads run concurrently, is it possible to get different output
values for the array elements if the program is executed multiple times? If it is, give two
possible outputs that could be produced by the program that are different from the
sequential output in part (a). If there is only one other possible set of output numbers
besides the sequential one from part (a), write that one and indicate that it is the only
possible different output.

(You should assume that the statements in each individual thread are executed in the order written, and not
rearranged by the compiler or memory system to be executed out-of-order. If different executions lead to
different output numbers, it is only because of the interaction between statements in the threads as they run
concurrently.)

(c) (4 points) What are the possible minimum and maximum values of the individual
elements of the array arr at the end of the concurrently executed program?

(d) (6 points) Now we would like to add synchronization to the original code so that the
program still has concurrent threads, but properly synchronized this time. In the copy of
the original code on the previous page, insert appropriate locking using a single
pthread_mutex_t lock so the threads do not interfere with each other as they update
shared variables, but also so there is as much concurrency as possible, i.e., each thread
should acquire the lock just long enough to avoid synchronization problems, but should
not, for example, acquire the lock and hold on to it until it has completely finished, which
would effectively cause the threads to execute one at a time rather than concurrently.

Hints: pthread_mutex_t and related mutex init, lock, and unlock functions are
useful. (See the section at the end of the exam for additional reference information.)

 CSE 333 25wi Final Exam 3/18/24

 Page 14 of 18

Question 7. (2 free points – all answers get the free points) Draw a picture of something
you’re planning to do over spring break!

Congratulations on lots of great work this quarter!!
Have a great spring break and best wishes for the future!

The CSE 333 staff

 CSE 333 25wi Final Exam 3/18/24

 Page 15 of 18

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 333 25wi Final Exam 3/18/24

 Page 16 of 18

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 333 25wi Final Exam 3/18/24

 Page 17 of 18

Reference information. Here is a collection of information that might, or might not, be
useful while taking the test. You can remove this page from the exam if you wish.

C++ strings: If s is a string, s.length() and s.size()return the number of characters in it.
s.find(search_string, start_pos = 0) returns the location of the first occurrence of
search_string starting no earlier than start_pos or returns string::npos if not found.
Subscripts (s[i]) can be used to access individual characters.

C++ STL:

• If lst is a STL vector, then lst.begin() and lst.end() return iterator values
of type vector<...>::iterator. STL lists and sets are similar.

• A STL map is a collection of pair objects. If p is a pair, then p.first and
p.second denote its two components. If the pair is stored in a map, then p.first
is the key and p.second is the associated value.

• If m is a map, m.begin() and m.end() return iterator values. For a map, these
iterators refer to the Pair objects in the map.

• If it is an iterator, then *it can be used to reference the item it currently points to, and
++it will advance it to the next item, if any.

• Some useful operations on STL containers (lists, maps, sets, etc.):
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false

• Additional operations on vectors:
o c.push_back(x) – copy x to end of c

• Some additional operations on maps:
o m.insert(x) – add copy of x to m (a key-value pair for a map)
o m.count(x) – number of elements with key x in m (0 or 1)
o m.find(item) – iterator pointing to element with key that matches item if found,

or m.end() if not found.
o m[k] can be used to access the value associated with key k. If m[k] is read and

has never been accessed before, then a <key,value> Pair is added to the map
with k as the key and with a value created by the default constructor for the value
type (0 or nullptr for primitive types).

• Some additional operations on sets
o s.insert(x) – add x to s if not already present
o s.count(x) – number of copies of x in s (0 or 1)

• You may use the C++11 auto keyword, C++11-style for-loops for iterating through
containers, and any other features of standard C++11, but you are not required to do so.

 CSE 333 25wi Final Exam 3/18/24

 Page 18 of 18

More reference information. You can also remove this page if you wish.

Some POSIX I/O and TCP/IP functions:

• int accept(int sockfd, struct socckaddr *addr, socklen_t *addrlen);
• int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
• int close(int fd)
• int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
• int freeaddrinfo(struct addrinfo *res)
• int getaddrinfo(const char *hostname, const char *service,

 const struct addrinfo *hints, struct addrinfo **res)
o Use NULL or listening port number for second argument

• int listen(int sockfd, int backlog)
o Use SOMAXCONN for backlog

• off_t lseek(int fd, off_t offset, int whence)
o whence is one of SEEK_SET, SEEK_CUR, SEEK_END

• ssize_t read(int fd, void *buf, size_t count)
o if result is -1, errno could contain EINTR, EAGAIN, or other codes

• int socket(int domain, int type, int protocol)
o Use SOCK_STREAM for type (TCP), 0 for protocol, get domain from address

info struct (address info struct didn’t fit on this page – we’ll include it later if
needed)

• ssize_t write(int fd, const void *buf, size_t count)

Some pthread functions:

• pthread_create(pthread_t *thread, attr, start_routine, arg)
• pthread_exit(void *status_ptr)
• pthread_join(pthread_t thread, void **value_ptr)
• pthread_cancel (pthread_t thread)
• pthread_detach(pthread_t thread)
• pthread_mutex_init(pthread_mutex_t * mutex, attr) // attr=NULL usually
• pthread_mutex_lock(pthread_mutex_t * mutex)
• pthread_mutex_unlock(pthread_mutex_t * mutex)
• pthread_mutex_destroy(pthread_mutex_t * mutex)

Basic C memory management functions:

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)

