
 CSE 333 25sp Midterm Exam 5/9/25

 Page 1 of 18

Name ___________________________________ UW Netid: _____________@uw.edu
 (please print legibly)

There are 7 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, open mind.
However, you may have a single 5x8 notecard with any hand-written notes you wish on
both sides.

There is a blank page at the end with extra space for your answers if you need more
room. It is after all the questions but before the detachable pages with reference
information.

After the extra blank page for answers, there is a sheet of paper containing assorted
reference information (most of which you probably won’t need). You should remove this
reference sheet from the exam and use it during the exam. It will not be scanned for
grading, so do not write answers on it.

Do not remove any pages from the middle of the exam.

If you do not remember the exact syntax for something, make the best attempt you can.
We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for some answers – we
tried to include enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 16

2. ______ / 20

3. ______ / 18

4. ______ / 12

5. ______ / 20

6. ______ / 12

7. ______ / 2

 CSE 333 25sp Midterm Exam 5/9/25

 Page 2 of 18

Question 1. (16 points) Making things. Once again, we’re working on some software for
our band. This time we’re using C++ and we’ve got two main programs, Song and
BandInfo, which use libraries named Graphic and Links. Here’s how the files are
related.

Links.h Graphic.h Graphic.cc
... Class Graphic {...} #include "Links.h"

#include "Graphic.h"
// Graphics class
// implementations

Song.cc BandInfo.cc
#include "Links.h"

int main(...) {...}

#include "Graphic.h"

int main(...) {...}

(a) (7 points) We want to construct a Makefile that will build either or both of these
programs, and incrementally re-compile and rebuild programs after files are changed.
The Makefile should have a default target named all that builds (or rebuilds) both
programs, as well as separate targets to build the Song and BandInfo programs.

Draw the dependency diagram showing the dependencies between all files used or
created during the build process. You should draw an arrow pointing from each file or
target that is built by the Makefile to the files or targets that it depends on.

(continued on next page)

 CSE 333 25sp Midterm Exam 5/9/25

 Page 3 of 18

Question 1. (cont.) (b) (7 points) One of the summer interns has written the following
Makefile which, unfortunately, doesn’t work properly. The Makefile should build
both programs by default if make is executed without any arguments, and if we run
make clean, it should remove all compiled files and any editor backup files with
filenames ending with the ~ character. If some files are changed, only necessary files
should be re-compiled or re-linked.

Fix the Makefile so it works as specified. You should write your changes on the code
below. If you need to add or move lines, write them in the correct place, or show clearly
with arrows where they should be located.

Hint: recall that if we compile Foo.cc with the -c option and do not specify an output
file name (no -o option), the output file created will be named Foo.o.

Song: Song.o BandInfo.o

 g++ -Wall -g -std=c++17 -o Song Song.o

BandInfo: BandInfo.o Graphic.o

 g++ -Wall -g -std=c++17 -o BandInfo BandInfo.o Graphic.o

Song.o: Song.cc Links.h

 g++ -Wall -g -std=c++17 -c Song.cc

BandInfo.o: BandInfo.cc Graphic.h Links.h

 g++ -Wall -g -std=c++17 -c BandInfo.cc

all: Song BandInfo

clean:

(c) (2 points) Suppose we fix all the bugs in the Makefile and run make to build
everything. Then, suppose we edit and change Graphic.cc and run make again. List
the Makefile targets that are rebuilt after this change in the order in which they are
rebuilt. If there is more than one possible ordering, give one of the possible orderings.

 CSE 333 25sp Midterm Exam 5/9/25

 Page 4 of 18

Question 2. (20 points) Valgrind and memory. This question concerns the following C
program membugs.c that manipulates SimpleString structs, which are a
representation for string data used in a section exercise.

Warning!! Watch your time and do not get bogged down on this question! Only a small
number of fixes are needed once you’ve found the problem(s).

Note: error checks for NULL pointers following malloc functions are omitted to save
space. We will assume malloc works without failing for this problem.

 1 #include <stdlib.h>
 2 #include <stdio.h>
 3 #include <string.h>
 4 #define ARRAY_SIZE 3
 5
 6 typedef struct simplestring_st {

 7 char* word;

 8 int num_letters;

 9 } SimpleString;
 10
 11 // Copy length number of characters from source into dest

 12 static void CopyMe(char* source, int length, char* dest);

 13
 14 int main(int argc, char **argv) {

 15 char word[] = "apples";

 16 // create array of ARRAY_SIZE pointers to new
 17 // SimpleString structs on the heap

 18 SimpleString** arr =

 19 (SimpleString**) malloc(ARRAY_SIZE*sizeof(SimpleString*));

 20 for (int i = 0; i < ARRAY_SIZE; i++) {

 21 SimpleString simple_str;

 22 arr[i] = &simple_str;

 23 int length = strlen(word);

 24 arr[i]->word = (char*) malloc(length);

 25 printf("%p\n", (void*) arr[i]->word);

 26 CopyMe(word, length, arr[i]->word);

 27 }

 28

(continued on next page)

 CSE 333 25sp Midterm Exam 5/9/25

 Page 5 of 18

Question 2 (cont.) Remainder of program code:

 29 // print only the first array element

 30 printf("%s has %i letters\n", arr[0]->word,

 31 arr[0]->num_letters);

 32 // clean up

 33 for (int i = 0; i < ARRAY_SIZE; i++) {

 34 printf("%p\n", (void*) arr[i]->word);

 35 free(arr[i]->word);

 36 }

 37 free(arr);

 38 return EXIT_SUCCESS;

 39 }

 40
 41 static void CopyMe(char* source, int length, char* dest) {

 42 for (int i = 0; i < length; i++) {

 43 dest[i] = source[i];

 44 }
 45 }

Question continues on next page. Remainder of this page left blank to be used as needed
while working the problem.

(continued on next page)

 CSE 333 25sp Midterm Exam 5/9/25

 Page 6 of 18

Question 2. (cont.) The program compiles without errors. But when we run it, it prints a
strange value for the length of “apples”, then crashes at the end with the message

 free(): double free detected in tcache 2

We re-ran the program using valgrind to see if we could get more information, and
discovered that there were more problems with the code.

Your job for this question is to examine the code and the valgrind report and then show
where the bugs are in the code and how to fix them. You should show corrections by
crossing out, changing, or adding code in the listing on the previous two pages. There is
extra blank space at the bottom of the previous page for you to use if you need additional
space, or if you need room to draw diagrams or do other work to figure out the
corrections.

A second copy of this valgrind output is included on the very last sheet of paper at the
end of the exam. You can remove that page and use it for reference while solving this
problem to minimize page flipping.

==2913707== Memcheck, a memory error detector
==2913707== Copyright (C) 2002-2024, and GNU GPL'd, by Julian Seward et al.
==2913707== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2913707== Command: ./membugs
==2913707==
0x4a770a0
0x4a77530
0x4a77580
==2913707== Invalid read of size 1
==2913707== at 0x484DE84: strlen (vg_replace_strmem.c:505)
==2913707== by 0x48CD0F7: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707== Address 0x4a77586 is 0 bytes after a block of size 6 alloc'd
==2913707== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2913707== by 0x4011DF: main (membugs.c:24)
==2913707==
==2913707== Conditional jump or move depends on uninitialised value(s)
==2913707== at 0x48CC3BB: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707==
==2913707== Use of uninitialised value of size 8
==2913707== at 0x48C091B: _itoa_word (in /usr/lib64/libc.so.6)
==2913707== by 0x48CBFAB: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707==
==2913707== Conditional jump or move depends on uninitialised value(s)
==2913707== at 0x48C092C: _itoa_word (in /usr/lib64/libc.so.6)
==2913707== by 0x48CBFAB: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)

(continued on next page)

 CSE 333 25sp Midterm Exam 5/9/25

 Page 7 of 18

Question 2. (cont.) Remainder of valgrind output:

==2913707==
==2913707== Conditional jump or move depends on uninitialised value(s)
==2913707== at 0x48CC8A3: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707==
==2913707== Conditional jump or move depends on uninitialised value(s)
==2913707== at 0x48CC0C7: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707==
apples has 32768 letters
0x4a77580
0x4a77580
==2913707== Invalid free() / delete / delete[] / realloc()
==2913707== at 0x4847B4C: free (vg_replace_malloc.c:989)
==2913707== by 0x4012C4: main (membugs.c:35)
==2913707== Address 0x4a77580 is 0 bytes inside a block of size 6 free'd
==2913707== at 0x4847B4C: free (vg_replace_malloc.c:989)
==2913707== by 0x4012C4: main (membugs.c:35)
==2913707== Block was alloc'd at
==2913707== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2913707== by 0x4011DF: main (membugs.c:24)
==2913707==
0x4a77580
==2913707==
==2913707== HEAP SUMMARY:
==2913707== in use at exit: 12 bytes in 2 blocks
==2913707== total heap usage: 5 allocs, 5 frees, 1,066 bytes allocated
==2913707==
==2913707== 12 bytes in 2 blocks are definitely lost in loss record 1 of 1
==2913707== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2913707== by 0x4011DF: main (membugs.c:24)
==2913707==
==2913707== LEAK SUMMARY:
==2913707== definitely lost: 12 bytes in 2 blocks
==2913707== indirectly lost: 0 bytes in 0 blocks
==2913707== possibly lost: 0 bytes in 0 blocks
==2913707== still reachable: 0 bytes in 0 blocks
==2913707== suppressed: 0 bytes in 0 blocks
==2913707==
==2913707== Use --track-origins=yes to see where uninitialised values come from
==2913707== For lists of detected and suppressed errors, rerun with: -s
==2913707== ERROR SUMMARY: 17 errors from 8 contexts (suppressed: 0 from 0)

 CSE 333 25sp Midterm Exam 5/9/25

 Page 8 of 18

Question 3. (18 points) POSIX I/O. You have been assigned to a critical mission. The
world’s stealthiest operatives - the Kitten Spy Network - have slipped a top-secret
message into your machine under the filename input.txt. Your job is to safely copy
this file to a new file output.txt and preserve the data so that it can be picked up by
another undercover agent.

All fancy tech has been compromised. You must use only POSIX I/O functions.

Here is a summary of some key POSIX I/O functions for your reference.

int open(const char *name, int mode);
 mode is one of O_RDONLY, O_WRONLY, O_RDWR
int creat(const char *name, int mode);
 create a new file
int close(int fd);
ssize_t read(int fd, void *buffer, size_t count);
 returns # bytes read or 0 (eof) or -1 (error)
ssize_t write(int fd, void *buffer, size_t count);
 returns # bytes written or -1 (error)

You can also use perror (for error reporting) and exit (to quit if something fails).

Below is the code you are to complete. Some blanks are unnecessary, so cross them out
if they don't apply to your solution. You should assume that all necessary header files
have been #included and you do not need to add any #includes. You also only
need to fill in blanks that are already included in the code. You should assume that there
will be no recoverable errors and do not need to add any error handling code beyond what
is already included in the question.

#define BUF_SIZE 100

int main() {

 int input_fd = open(_____________, _____________);

 if (_____________ < 0) {

 perror("Failed when opening input file");

 close(_____________);

 return EXIT_FAILURE;

 }

 int output_fd = open(_____________, _____________);

 if (________ < 0) {

 perror("Failed when opening output file");

 close(_____________);

 close(_____________);

 return EXIT_FAILURE;

 }

 (continued on next page)

 CSE 333 25sp Midterm Exam 5/9/25

 Page 9 of 18

Question 3 (cont.)

 char buffer[BUF_SIZE];

 ssize_t bytes_read;

 while ((bytes_read = read(input_fd, buffer, BUF_SIZE)) > 0) {

 ssize_t bytes_written = 0;

 while (bytes_written < bytes_read) {

 ssize_t result = write(output_fd,

 ____________________________,

 ____________________________);

 if (result < 0) {

 perror("Failed to write to output file");

 close(input_fd);

 close(output_fd);

 return EXIT_FAILURE;

 }

 bytes_written += _____________;

 }

 if (_____________ < 0) {

 perror("Failed while reading from input file");

 close(input_fd);

 close(output_fd);

 return EXIT_FAILURE;

 }

 close(input_fd);

 close(output_fd);

 return EXIT_SUCCESS;

}

 CSE 333 25sp Midterm Exam 5/9/25

 Page 10 of 18

Question 4. (12 points) Preprocessor. Suppose we have the following four C source
files:

foo.h main.c

#ifndef FOO_H_
#define FOO_H_

#include "bar.h"
#define IT 42
#define MORE IT + 1
struct empty { };

#endif // FOO_H_

#include "bar.h"
#include "foo.h"

int main() {
 int k = MORE;
 bigint n = bar(k+IT);
 return 0;
}

bar.h bar.c

#ifndef BAR_H_
#define BAR_H_

typedef long int bigint;
bigint bar(int n);

#endif // BAR_H_

#include "bar.h"

bigint bar(int n) {
 return MORE*IT*n;
}

Show the output produced by the C preprocessor when it processes file main.c (i.e., if
we were compiling this file, what output would the preprocessor send to the C compiler
that actually translates the contents of main.c to machine code?) Hint: remember that
the preprocessor only does string substitution and does not analyze the C code it produces
for correctness.

 CSE 333 25sp Midterm Exam 5/9/25

 Page 11 of 18

Question 5. (20 points) Here is another one of those slightly maddening C++ programs
with a fairly simple class, which represents chocolate chip cookies this time, and a small
program that uses it. The code compiles and executes with no errors. In the box on the
right, write the output produced when it runs.

You should assume that all copy constructors, constructors, and destructors are called as
specified by the C++ language and not eliminated by possible compiler optimizations

#include <iostream>
using namespace std;
class Cookie {
 public:
 Cookie() : chips_(0) { cout << "Bake plain cookie" << endl; }
 Cookie(int n) : chips_(n) {
 cout << "Bake " << chips_ << " chip cookie" << endl;
 }
 Cookie(const Cookie& other) : chips_(other.chips_) {
 cout << "Clone " << chips_ << " chips" << endl;
 }
 Cookie& operator=(const Cookie& other) {
 cout << "Replace " << chips_
 << " chips with " << other.chips_ << " chips" << endl;
 if (this != &other) chips_ = other.chips_;
 return *this;
 }
 ~Cookie() { cout << "Eat " << chips_ << " chips" << endl; }
 int chips() const { return chips_; }
private:
 int chips_;
};

Cookie taste(Cookie c) {
 cout << "Taste cookie..." << endl;
 return c;
}

int main() {
 Cookie a(3);
 Cookie b = 2;
 cout << "--1--" << endl;
 Cookie c;
 c = a
 cout << "--2--" << endl;
 Cookie d = taste(b);
 cout << "-- 3--" << endl;
 return EXIT_SUCCESS;
}

Write the program output here

 CSE 333 25sp Midterm Exam 5/9/25

 Page 12 of 18

Question 6. (12 points) One of your colleagues has some questions about C++ classes.
Their example is the following code, which doesn’t do very much, but does include the
required constructors, destructor, and assignment for a typical class:

#include <cstdlib>
class Ogre {
 public:
 Ogre(){ name_ = new char[10]; }
 Ogre(const Ogre &other) = default;
 Ogre& operator=(const Ogre &other) = default;
 ~Ogre(){ delete [] name_; }
 private:
 char* name_;
};

int main(int argc, char **argv) {
 Ogre shrek; // Line 1
 Ogre* fiona = new Ogre(); // Line 2
 shrek = *fiona; // Line 3
 delete fiona; // Line 4
 return EXIT_SUCCESS; // Line 5
}

(a) (8 points) Below, draw a diagram showing the contents of memory immediately after
Line 3 is executed. Be sure to carefully distinguish between local (stack) variables
and heap-allocated memory. Variables that are local to main should be drawn in a box
labeled main on the stack.

 Stack Heap

(b) (4 points) Does this program execute successfully when it runs? If not, what goes
wrong and why? (A couple of sentences should be more than enough.)

Question not used during
exam because of potential
time pressure to finish
everything in 50 min.

 CSE 333 25sp Midterm Exam 5/9/25

 Page 13 of 18

Question 7. (2 free points) (All reasonable answers receive the points. All answers are
reasonable as long as there is an answer. J)

(a) (1 point) What question were you expecting to appear on this exam that wasn’t
included?

(b) (1 point) Should we include that question on the final exam? (circle or fill in)

 Yes

 No

 Heck No!!

 $!@$^*% No !!!!!

 Yes, yes, it must be included!!!

 No opinion / don’t care

 None of the above. My answer is _________________________________.

 CSE 333 25sp Midterm Exam 5/9/25

 Page 14 of 18

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 333 25sp Midterm Exam 5/9/25

 Page 15 of 18

Reference information. Here is a collection of information that might, or might not, be
useful while taking the test. You should remove this page from the exam. Do not write
answers on this page. It will not be scanned for grading.

Memory management (<stdlib.h>)

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)

Strings and characters (<string.h>, <ctype.h>)

Some of the string library functions:

• char* strncpy(dest, src, n), copies exactly n characters from src to dst, adding
‘\0’s at end if the ‘\0’ at the end of the string src is found before n chars copied.

• char* strcpy(dest, src), same as strncpy but with no length check
• char* strncat(dest, src, n), Appends the first n characters of src to dst, plus a

terminating null-character. If the length of the C string in src is less than n, only
the content up to the terminating null-character is copied.

• char* strcat(dest, src), same as strncat but with no length check
• int strncmp(string1, string2, n), <0, =0, >0 if compare <, =, >
• int strcmp(string1, string2)
• char* strstr(string, search_string)
• int strnlen(s, max_length), # characters in s not including terminating ‘\0’
• int strlen(s)
• Character tests: isupper(c), islower(c), isalpha(c), isdigit(c), isspace(c)
• Character conversions: toupper(c), tolower(c)

Files (<stdio.h>)

Some file functions and information:

• Default streams: stdin, stdout, and stderr.
• FILE* fopen(filename, mode), modes include “r” and “w”
• char* fgets(line, max_length, file), returns NULL if eof or error, otherwise reads

up to max-1 characters into buffer, including any \n, and adds a \0 at the end
• size_t fread(buf, 1, count, FILE* f)
• size_t fwrite(buf, 1, count, FILE* f)
• int fprintf(format_string, data…, FILE *f)
• int feof(file), returns non-zero if end of file has been reached
• int ferror(FILE* f), returns non-zero if the error indicator associated with f is set
• int fputs(line, file)
• int fclose(file)

A few printf format codes: %d (integer), %c (char), %s (char*)

 CSE 333 25sp Midterm Exam 5/9/25

 Page 16 of 18

More reference information, C++ this time. Do not write answers on this page. It will
not be scanned for grading.

C++ strings

If s is a string, s.length() and s.size()return the number of characters in it.
Subscripts (s[i]) can be used to access individual characters. The usual comparison
operators can be used to compare strings, and the operator + can be used to concatenate
strings.

C++ STL

• If lst is a STL vector, then lst.begin() and lst.end() return iterator
values of type vector<...>::iterator. STL lists and sets are similar.

• A STL map is a collection of Pair objects. If p is a Pair, then p.first and
p.second denote its two components. If the Pair is stored in a map, then
p.first is the key and p.second is the associated value.

• If m is a map, m.begin() and m.end() return iterator values. For a map, these
iterators refer to the Pair objects in the map.

• If it is an iterator, then *it can be used to reference the item it currently points
to, and ++it will advance it to the next item, if any.

• Some useful operations on STL containers (lists, maps, sets, etc.):
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false

• Additional operations on vectors:
o c.push_back(x) – copy x to end of c

• Some additional operations on maps:
o m.insert(x) – add copy of x to m (a key-value pair for a map)
o m.count(x) – number of elements with key x in m (0 or 1)
o m[k] can be used to access the value associated with key k. If m[k] is

read and has never been accessed before, then a <key,value> Pair is
added to the map with k as the key and with a value created by the default
constructor for the value type (0 or nullptr for primitive types).

• Some additional operations on sets
o s.insert(x) – add x to s if not already present
o s.count(x) – number of copies of x in s (0 or 1)

• You may use the C++11 auto keyword, C++11-style for-loops for iterating
through containers, and any other features of standard C++11, but you are not
required to do so.

 CSE 333 25sp Midterm Exam 5/9/25

 Page 17 of 18

Extra copy of the valgrind output from Question 2. You should remove this page and
use it for reference while solving that problem to minimize page flipping.

Do not write answers on this page. It will not be scanned for grading.

==2913707== Memcheck, a memory error detector
==2913707== Copyright (C) 2002-2024, and GNU GPL'd, by Julian Seward et al.
==2913707== Using Valgrind-3.23.0 and LibVEX; rerun with -h for copyright info
==2913707== Command: ./membugs
==2913707==
0x4a770a0
0x4a77530
0x4a77580
==2913707== Invalid read of size 1
==2913707== at 0x484DE84: strlen (vg_replace_strmem.c:505)
==2913707== by 0x48CD0F7: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707== Address 0x4a77586 is 0 bytes after a block of size 6 alloc'd
==2913707== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2913707== by 0x4011DF: main (membugs.c:24)
==2913707==
==2913707== Conditional jump or move depends on uninitialised value(s)
==2913707== at 0x48CC3BB: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707==
==2913707== Use of uninitialised value of size 8
==2913707== at 0x48C091B: _itoa_word (in /usr/lib64/libc.so.6)
==2913707== by 0x48CBFAB: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707==
==2913707== Conditional jump or move depends on uninitialised value(s)
==2913707== at 0x48C092C: _itoa_word (in /usr/lib64/libc.so.6)
==2913707== by 0x48CBFAB: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)

(continued on next page)

 CSE 333 25sp Midterm Exam 5/9/25

 Page 18 of 18

Remainder of the valgrind output from question 2. Do not write answers on this page.
It will not be scanned for grading.

==2913707==
==2913707== Conditional jump or move depends on uninitialised value(s)
==2913707== at 0x48CC8A3: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707==
==2913707== Conditional jump or move depends on uninitialised value(s)
==2913707== at 0x48CC0C7: __vfprintf_internal (in /usr/lib64/libc.so.6)
==2913707== by 0x48C14FE: printf (in /usr/lib64/libc.so.6)
==2913707== by 0x40126D: main (membugs.c:30)
==2913707==
apples has 32768 letters
0x4a77580
0x4a77580
==2913707== Invalid free() / delete / delete[] / realloc()
==2913707== at 0x4847B4C: free (vg_replace_malloc.c:989)
==2913707== by 0x4012C4: main (membugs.c:35)
==2913707== Address 0x4a77580 is 0 bytes inside a block of size 6 free'd
==2913707== at 0x4847B4C: free (vg_replace_malloc.c:989)
==2913707== by 0x4012C4: main (membugs.c:35)
==2913707== Block was alloc'd at
==2913707== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2913707== by 0x4011DF: main (membugs.c:24)
==2913707==
0x4a77580
==2913707==
==2913707== HEAP SUMMARY:
==2913707== in use at exit: 12 bytes in 2 blocks
==2913707== total heap usage: 5 allocs, 5 frees, 1,066 bytes allocated
==2913707==
==2913707== 12 bytes in 2 blocks are definitely lost in loss record 1 of 1
==2913707== at 0x484482F: malloc (vg_replace_malloc.c:446)
==2913707== by 0x4011DF: main (membugs.c:24)
==2913707==
==2913707== LEAK SUMMARY:
==2913707== definitely lost: 12 bytes in 2 blocks
==2913707== indirectly lost: 0 bytes in 0 blocks
==2913707== possibly lost: 0 bytes in 0 blocks
==2913707== still reachable: 0 bytes in 0 blocks
==2913707== suppressed: 0 bytes in 0 blocks
==2913707==
==2913707== Use --track-origins=yes to see where uninitialised values come from
==2913707== For lists of detected and suppressed errors, rerun with: -s
==2913707== ERROR SUMMARY: 17 errors from 8 contexts (suppressed: 0 from 0)

