
 CSE 333 25sp Final Exam 6/11/25

 Page 1 of 16

Name ______________________________________ UW netid ___________@uw.edu
Please print legibly

There are 8 questions worth a total of 110 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed telepathy, no AI, open
mind. However, you may have two 5x8 notecards or the equivalent with any hand-
written notes you wish written on both sides.

There is a blank page at the end with extra space for your answers if you need more
room. It is after all the questions but before the detachable sheet with reference
information.

After the extra blank pages for answers, there are two pages of assorted reference
information (much of which you probably won’t need). You should remove this sheet of
paper from the exam for convenience. These pages will not be scanned or graded.

Do not remove any pages from the middle of the exam.

If you do not remember the exact syntax for something, make the best attempt you can.
We will make allowances when grading.

Don’t be alarmed if there seems to be more space than is needed for some answers – we
tried to include more than enough blank space.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin

Score _________________ / 110

1. ______ / 18

2. ______ / 18

3. ______ / 10

4. ______ / 12

5. ______ / 18

6. ______ / 16

7. ______ / 16

8. ______ / 2

 CSE 333 25sp Final Exam 6/11/25

 Page 2 of 16

Question 1. (18 points) The traditional C++/STL programming. We have accumulated a
list of stores and products that they sell. We’d like to write a small C++ program that
reads this information from the standard input file (cin) and then prints out a list of all
the products sorted by product name and for each shows the stores that sell them.

Example: suppose we have the following input read from cin:

qfc banana
amazon book
amazon iphone
cvs toothpaste
qfc toothpaste
apple iphone
apple computer
ubookstore book
amazon banana

After reading this input and reaching the end of file on cin, the program should produce
the following output:

banana: qfc amazon
book: amazon ubookstore
computer: apple
iphone: apple amazon
toothpaste: cvs qfc

In the output, the products must be listed (sorted) in order, but the stores that sell each
product can be listed in any order.

Since this is an exam question, you may assume that input operations like reading strings
will succeed, and you should use cin>>s to read the strings and skip whitespace. You
can assume the input has exactly the right format and does not have extra strings or
missing data, and the store and product names consist only of alphabetic characters. You
may also assume there are no duplicate “store product” entries in the input data. Strings
must match exactly to be equal – you do not need to convert strings to lower-case letters
or anything like that – i.e., keep it simple.

Write your code in the space on the following page. You may assume that all necessary
#include statements are provided for whatever standard libraries you wish to use, but
you do need to declare appropriate variables to hold data as you read and process it.

Hints: various STL containers like map might be particularly useful. Basic reference
information about STL is included on the last page of this exam.

(continued on next page)

 CSE 333 25sp Final Exam 6/11/25

 Page 3 of 16

Question 1. (cont.) Write your code for this problem below:

// assume all necessary libraries are #included
using namespace std;

int main(int argc, char** argv) {
 // add your code below

}

 CSE 333 25sp Final Exam 6/11/25

 Page 4 of 16

Question 2. (18 points) A different twist on the usual inheritance question. Consider the
following program and answer questions about it on the next page. This program prints
some of the things that someone playing the card game poker might say during the game.
But don’t worry – you don’t need to know anything about poker to answer this question.

#include <iostream>
#include <cstdlib>

using namespace std;

class Poker {
 public:
 /* to be supplied if needed */

};

class Hands : public Poker {
 public:
 void m1() {std::cout << "I'm ";}
 virtual void m3() {std::cout << "not ";}

};

class Flush : public Hands {
 public:
 virtual void m2() {std::cout << "so ";}
 void m3() {std::cout << "in!";}

};

int main(int argc, char** argv) {
 Poker* ph = new Hands();
 Poker* pf = new Flush();
 Hands* hf = new Flush();

 ph->m1();
 pf->m2();
 hf->m3();

 return EXIT_SUCCESS;
}

Continue with the problem on the next page.

 CSE 333 25sp Final Exam 6/11/25

 Page 5 of 16

Question 2. (cont.) (a) (4 points) When we try to run the program on the previous page,
it won’t compile. What, precisely, are the errors in the code that prevent it from
compiling?

(b) (6 points) On the previous page, make changes to the code so that it will compile and
so it will print out the following three strings when it is executed: I’m all in! . You
may not change or delete any of the functions currently in the program – in particular,
they must continue to print whatever they print in the original code. You need to decide
what new function(s) to add, if any, what they should print, and whether they are
virtual or not. Hint: you may find it helpful to work on this part of the question while
also working on part (c) below.

(c) (8 points) Complete the diagram below to show all of the variables, objects, virtual
method tables (vtables) and functions in the program after making your changes in
part (b). Parts of the diagram are supplied for you.

Poker vtbl

Hands::m1

Hands::m3

Flush::m2

Flush::m3

vtables (might have way
more slots than needed)

Hands vtbl

Flush vtbl

main() variables
(add pointers as needed)

ph

functions (add
more as needed)

objects (add objects
& pointers as needed)

pf

hf

 CSE 333 25sp Final Exam 6/11/25

 Page 6 of 16

Question 3. (10 points) We know that C++ smart pointers can handle some memory
management tasks for us automatically. However, they have to be used properly.

(a) (5 points) Suppose we have the following Node definition, which uses
shared_ptrs for links used to create double-linked lists and similar data structures.

struct Node {
 int data;
 shared_ptr<Node> next;
 shared_ptr<Node> prev;
};

Will this prevent memory leaks if we have a shared_ptr variable pointing to the first
node in a list? Give a brief justification or example for your answer.

(b) (5 points) One of our colleagues says we should use weak_ptrs instead of
shared_ptrs for the backward (prev) links in the nodes:

struct Node {
 int data;
 shared_ptr<Node> next;
 weak_ptr<Node> prev;
};

Will this prevent memory leaks if we have a shared_ptr variable pointing to the first
node in a list? Give a brief justification or example for your answer.

 CSE 333 25sp Final Exam 6/11/25

 Page 7 of 16

Question 4. (12 points) Templates and Boxes. Here is a small program that defines and
uses a class Box that holds items that have integer weights. Each Box has a maximum
weight capacity that is set when it is created, and we keep track of the remaining capacity
as items are added to the Box.

#include <iostream>
#include <cstdlib>
using namespace std;

/* A box with a fixed weight limit */

class Box {
 public:
 // Construct new Box with default max weight 10
 Box() : remaining_weight_(10) { }

 // Construct new Box with given max weight
 Box(int w): remaining_weight_(w) { }

 // Add item with given weight w to this Box.
 // Return 1 (success) if successful, return 0 if not enough
 // capacity in the box for the new item.
 int add(int w) {
 if (w <= remaining_weight_) {
 remaining_weight_ -= w;
 return 1;
 } else {
 return 0;
 }
 }

 // return remaining weight capacity in this box
 int remaining() {
 return remaining_weight_;
 }

 private:
 int remaining_weight_; // remaining weight capacity in this Box
};

/* main program to use a Box */
int main(int argc, char** argv) {
 Box b(5);
 cout << b.add(3) << endl;
 cout << b.remaining() << endl;
 return EXIT_SUCCESS;
}

We’ve decided that this Box class would be much more useful if would work with
weight values that have any arithmetic type that supports the necessary operations (<=,
-=, etc.). Write in changes to the above code to make this into a class template where the
weight values could be any suitable type T, and adjust the main program to create a Box
with weights that have values of type double by using appropriate type parameter
values if needed.

 CSE 333 25sp Final Exam 6/11/25

 Page 8 of 16

Question 5. (18 points) Sockets & strings – Oh My! We’re working on a web program
and need to implement a function that reads bytes from a socket and locates and returns a
data string extracted from the input stream. We assume the data that we want is
immediately preceded by the contiguous (no spaces) characters #start# and
immediately followed by the characters #end#. So, for example, if the input stream is

 Stuff #start# #stop# this! is not the #end # yet#end# stuff

then the function should return all of the characters between the markers, including any
whitespace or special characters, but not including the markers. The data returned from
this stream is underlined above, and includes an initial space that immediately follows
#start#. Note that the data string can contain some of the characters that can appear in
the marker #end#, but only the first complete occurrence of #end# marks the data end.

Assumptions: You may assume that the input stream will contain exactly one copy of the
markers #start# and #end# with zero or more characters between them. The
characters between the markers in the stream should be returned as a C++ string,
which might be an empty string if there are no characters between #start# and
#end#.

As with the hw4 server, you will need to use the POSIX read function to read bytes
from the stream, and your code needs to handle possible error return values from read,
including EAGAIN and EINTR. Also, as with hw4, it is possible that a single read
operation may return only part of the data. In particular, a single read might end with
only part of the #start# or #end# markers, with the rest of the #start# or #end#
marker appearing in the input the next time we call read.

Once your function has read all of the characters surrounded by the #start# and
#end# markers it should return a string containing those characters, without the
markers, as its result. You do not need to close the stream or do anything else with it.
However, if it simplifies things, you can read as much additional data from the stream as
you wish – maybe even reading until reaching end of file and then extracting the message
– whatever is easiest.

You should assume that all necessary library function headers have been #included,
and that using namespace std; has also been included in the code. You do not
need to write these.

Hint: the information about C++ strings on the reference page at the end of the exam
might be useful.

(continued on next page)

 CSE 333 25sp Final Exam 6/11/25

 Page 9 of 16

Question 5 (cont.) Write your implementation of function ReadData below.

 /* Read from the socket file descriptor sfd and return
 a string containing the characters that are surrounded
 by the markers #start# and #end#. The markers are not
 included in the returned string. */
 string ReadData(int sfd) {

 }

	

 CSE 333 25sp Final Exam 6/11/25

 Page 10 of 16

Question 6. (16 points, 2 points each part) Concurrency. Consider the following C
program that creates a pair of threads and executes them. This program does compile and
execute without errors.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>

int x = 0;

void * thread_worker(void * ignore) {
 x = x + 1;
 printf("x=%d\n", x);
 return NULL;
}

int main() {
 pthread_t t1, t2;
 int ignore;
 ignore = pthread_create(&t1, NULL, &thread_worker, NULL);
 ignore = pthread_create(&t2, NULL, &thread_worker, NULL);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 printf("final x=%d\n", x);
 return EXIT_SUCCESS;
}

For each of the following output sequences, circle “yes” if it could be produced by some
possible execution of the above program and circle “no” if it could never happen under
any circumstances. (Hint: at least one of these sequences is possible.)

(a) YES NO x=0 x=1 final x=1

(b) YES NO x=1 x=1 final x=1

(c) YES NO x=1 x=2 final x=1

(d) YES NO x=1 x=1 final x=2

(e) YES NO x=1 x=2 final x=2

(f) YES NO x=2 x=2 final x=1

(g) YES NO x=2 x=1 final x=2

(h) YES NO x=2 x=2 final x=2

 CSE 333 25sp Final Exam 6/11/25

 Page 11 of 16

Question 7. (16 points) The question we dropped from the midterm to save time! One
of your colleagues has some questions about C++ classes. Their example is the following
code, which doesn’t do very much, but does include the required constructors, destructor,
and assignment for a typical class:

#include <cstdlib>
class Ogre {
 public:
 Ogre(){ name_ = new char[10]; }
 Ogre(const Ogre &other) = default;
 Ogre& operator=(const Ogre &other) = default;
 ~Ogre(){ delete [] name_; }
 private:
 char* name_;
};

int main(int argc, char **argv) {
 Ogre shrek; // Line 1
 Ogre* fiona = new Ogre(); // Line 2
 shrek = *fiona; // Line 3
 delete fiona; // Line 4
 return EXIT_SUCCESS; // Line 5
}

(a) (12 points) Below, draw a diagram showing the contents of memory immediately after
Line 3 is executed. Be sure to carefully distinguish between local (stack) variables
and heap-allocated memory. Variables that are local to main should be drawn in a box
labeled main on the stack.

 Stack Heap

(b) (4 points) Does this program execute successfully when it runs? If not, what goes
wrong and why? (A couple of sentences should be more than enough.)

 CSE 333 25sp Final Exam 6/11/25

 Page 12 of 16

Question 8. (2 free points – all answers get the free points) Draw a picture of something
you’re planning to do this summer!

Congratulations on lots of great work this quarter!
Have a great summer and best wishes for the future!!

The CSE 333 staff

 CSE 333 25sp Final Exam 6/11/25

 Page 13 of 16

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 333 25sp Final Exam 6/11/25

 Page 14 of 16

Extra space for answers, if needed. Please be sure to label which question(s) are
answered here, and be sure to put a note on the question page so the grader will know to
look here.

 CSE 333 25sp Final Exam 6/11/25

 Page 15 of 16

Reference information. Here is a collection of information that might, or might not, be
useful while taking the test. You should remove this page from the exam.

C++ strings: If s is a string, s.length() and s.size()return the number of characters in it.
s.find(search_string, start_pos = 0) returns the location of the first occurrence of
search_string starting no earlier than start_pos or returns string::npos (string length) if not
found. s.substr(pos = 0, len = npos) returns a new string that starts at location pos of s with
len characters, or until the end of the string if that comes first. s.append(t) appends string t
to s; s.append(t, pos, len) appends the substring of t starting at pos with len characters (or
length of string if less then len) to s. s+t returns a new string that is the concatenation of
strings s and t. Subscripts: s[i] can be used to access individual characters. C-strings:
s.c_str() returns a char* pointer to a heap-allocated, \0-terminated C-string copy of s.

C++ STL:
• If lst is a STL vector, then lst.begin() and lst.end() return iterator values

of type vector<...>::iterator. STL lists and sets are similar.
• A STL map is a collection of pair objects. If p is a pair, then p.first and

p.second denote its two components. If the pair is stored in a map, then p.first
is the key and p.second is the associated value.

• If m is a map, m.begin() and m.end() return iterator values. For a map, these
iterators refer to the Pair objects in the map.

• If it is an iterator, then *it can be used to reference the item it currently points to, and
++it will advance it to the next item, if any.

• Some useful operations on STL containers (lists, maps, sets, etc.):
o c.clear() – remove all elements from c
o c.size() – return number of elements in c
o c.empty() – true if number of elements in c is 0, otherwise false

• Additional operations on vectors:
o c.push_back(x) – copy x to end of c

• Some additional operations on maps:
o m.insert(x) – add copy of x to m (a key-value Pair for a map)
o m.count(x) – number of elements with key x in m (0 or 1)
o m.find(item) – iterator pointing to element with key that matches item if found,

or m.end() if not found.
o m[k] can be used to access the value associated with key k. If m[k] is read and

has never been accessed before, then a <key,value> Pair is added to the map
with k as the key and with a value created by the default constructor for the value
type (0 or nullptr for primitive types).

o The elements of a Pair p can be accessed as p.first and p.second.
• Some additional operations on sets

o s.insert(x) – add x to s if not already present
o s.count(x) – number of copies of x in s (0 or 1)

 CSE 333 25sp Final Exam 6/11/25

 Page 16 of 16

More reference information. You should remove this page from the exam.

Some POSIX I/O and TCP/IP functions:

• int accept(int sockfd, struct socckaddr *addr, socklen_t *addrlen);
• int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
• int close(int fd)
• int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
• int freeaddrinfo(struct addrinfo *res)
• int getaddrinfo(const char *hostname, const char *service,

 const struct addrinfo *hints, struct addrinfo **res)
o Use NULL or listening port number for second argument

• int listen(int sockfd, int backlog)
o Use SOMAXCONN for backlog

• off_t lseek(int fd, off_t offset, int whence)
o whence is one of SEEK_SET, SEEK_CUR, SEEK_END

• ssize_t read(int fd, void *buf, size_t count)
o if result is -1, errno could contain EINTR, EAGAIN, or other codes

• int socket(int domain, int type, int protocol)
o Use SOCK_STREAM for type (TCP), 0 for protocol, get domain from address

info struct (address info struct didn’t fit on this page – we’ll include it later if
needed)

• ssize_t write(int fd, const void *buf, size_t count)

Some pthread functions:

• pthread_create(pthread_t *thread, attr, start_routine, arg)
• pthread_exit(void *status_ptr)
• pthread_join(pthread_t thread, void **value_ptr)
• pthread_cancel (pthread_t thread)
• pthread_detach(pthread_t thread)
• pthread_mutex_init(pthread_mutex_t * mutex, attr) // attr=NULL usually
• pthread_mutex_lock(pthread_mutex_t * mutex)
• pthread_mutex_unlock(pthread_mutex_t * mutex)
• pthread_mutex_destroy(pthread_mutex_t * mutex)

Basic C memory management functions:

• void * malloc(size_t size)
• void free(void *ptr)
• void * calloc(size_t number, size_t size)
• void * realloc(void *ptr, size_t size)

