CSE 333 Section 6 - C++ Inheritance

Welcome back to section! We’re happy you’re here §oge?--, %

Inheritance

A Derived class inherits from a base class (Similar to: A subclass inherits from a superclass)

® The public interface of a derived class Inherits all non-private member variables and
functions (except for ctor, cctor, dtor, op=)

® Aside: We will be only using public inheritance in CSE 333

Inheritance in HW3

Base Class: HashTableReader (Protected) | Derived Classes

° list<IndexFileOffset t> ° IndexTableReader — Reads index table
LookupElementPositions (
HTKey t hash val) const; e DocIDTableReader —Reads DoclD Table
e FILE* file ; e DocTableReader — Reads DocTable
° IndexFileOffset t offset ; e TFileIndexReader — Reads File’s Index

° BucketListHader header ;

Style Considerations

® Use virtual only once when first defined in the base class
® All derived classes of a base class should use override to get the compiler to check
that a function overrides a virtual function from a base class

® Use virtual for destructors of a base class of a base class — Guarantees all derived
classes will use dynamic dispatch to ensure use of appropriate destructors

Exercise 1:
Consider the program below, which does compile and execute with no errors, except that it
leaks memory (which doesn’t matter for this question).

(a) Complete the diagram on the next page by adding the remaining objects and all of the
additional pointers needed to link variables, objects, virtual function tables, and function bodies.
Be sure that the order of pointers in the virtual function tables is clear (i.e., which one is first,
then next, etc.). One of the objects and a couple of the pointers are already included to help
you get started.

(b) Write the output produced when this program is executed. If the output doesn't fit in one
column in the space provided, write multiple vertical columns showing the output going from top
to bottom, then successive columns to the right

#include <iostream>
using namespace std;

class A {

public:
virtual void f£1() { f£2(); cout << "A::fl" << endl; }
vold £2 () { cout << "A::f2" << endl; }

i

class B : public A {

public:
virtual void £3() { f1(); cout << "B::f3" << endl; }
virtual void f2 () { cout << "B::f2" << endl; }

}s
class C : public B {
public:
void f£1() { £2(); cout << "C::fl" << endl; }
}i

variables objects Avibl function code
> s T Auft
[
[] A::f2
bb
o B vtbl
ab-__ B::f2
ac—__ B::f3
C vtbl
C:f1
int main() {
A* aa = new A();
B* bb = new B();
A* ab = bb;
A* ac = new C{();
aa->fl1();
cout << "---" << endl;
bb->f1 () ;
cout << "---" << endl;
bb->f2 () ;
cout << "---" << endl;
ab->f2 () ;
cout << "---" << endl;
bb->f3() ;
cout << "---" << endl; |Output:
ac->f1();

return EXIT SUCCESS;

Bonus:

Virtual holidays! Consider the following C++ program, which does compile and execute

successfully.

#include <iostream>

using namespace std;

class One

{ public:

void ml () { cout << "H";
virtual wvoid m2() { cout << "1";
virtual void m3() { cout << "p"

}s

class Two: public One
{ public:

virtual void ml cout << "a";
cout << "d";

cout << "y";

()
void m2 ()
virtual void m3 ()

()

P e e e

void m4é

}s

class Three: public Two

{

public:
void ml () { cout << "o";
void m2 () { cout << "i";
void m3() { cout << "gs";
void m4 () { cout << "!";

cout << '"p";

}
}
}

}

int main () {

b

Two t;

Three th;
One *op =
Two *tp =

&ty
&th;

Three *thp = &th;

op—>ml () ;

thp->ml () ;

op—->m2 () ;

thp->m2 () ;

tp->m2 () ;
tp->ml () ;
tp->m3 () ;

thp->m3 () ;

tp->m4 () ;

14

’

14

cout <<

(a) (8 points) On the next page, complete the diagram showing all of the
variables, objects, virtual method tables (vtables) and functions in this program.
Parts of the diagram are supplied for you on the next page.

(b) (6 points) What does this program print when it executes?

(©) (6 points) Modify the above program by removing and/or adding the virtual
keyword in appropriate place(s) so that the modified program prints HappyHolidays!
(including the ! at the end). Draw a line through the virtual keyword where it should be
deleted and write in virtual where it needs to be added. Do not make any other changes
to the program.

(cont.) Draw your answer to part (a) here. Complete the vtable diagram below. Draw
arrows to show pointers from variables to objects, from objects to vtables, and from
vtable slots to functions. Note that there may be more slots provided in the blank
vtables than you actually need. Leave any unused slots blank.

_ _ vtables (might have functions
main() variables more slots than
(draw pointers as needed)
needed)
One vibl One::ml|
t One::m2
One::m3
th
Two:ml
0
p Two:m2
Two vtbl
p Two::m3
Two::md
thp
Three::ml
Three::m2
Three::m3
Three vtbl
Three::md

	CSE 333 Section 6 - C++ Inheritance
	Inheritance
	Inheritance in HW3
	Style Considerations

