
HW2 Overview, C++ Intro

CSE 333
Section 4

Logistics
● Homework 2

○ Due next Thursday, Oct 23 @ 11:59pm
○ Indexing files to allow for searching

● Exercise 9
○ Write a Vector class in C++
○ Out tomorrow morning, due Wednesday 10/22 @ 10:00am

● TODO: read about copy ctr/op=/dtr in C++ Primer before Friday class

● Please look at your exercise feedback, even if you get a 3 (= “gold star”). That means no
serious problems, but there often is feedback about things to fix in future work. We’re
seeing things recur that should be not happening over and over. Let’s fix it!

Homework 2 Overview

Homework 2

● Main Idea: Build a search engine for a file system
○ It can take in queries and output a list of files in a directory that has that query
○ The query will be ordered based on the number of times the query is in that file
○ Should handle multiple word queries (Note: all words in a query have to be in the

file)

● What does this mean?
○ Part A: Parsing a file and reading all of its contents into heap allocated memory
○ Part B: Crawling a directory (reading all regular files recursively in a directory)

and building an index to query from
○ Part C: Build a searchshell (search engine) to query your index for results

Note: It will use the LinkedList and
HashTable implementations from HW1!

Part A: File Parsing

Read a file and generate a
HashTable of WordPositions!

Word positions will include the word
and LinkedList of its positions in a
file.

My goodness! I love the course CSE333.\n
I'll recommend this course to my friends.\n

somefile.txt

ParseIntoWordPositionsTable(contents)

typedef struct WordPositions {

 char *word; // normalized word. Owned.

 LinkedList *positions; // list of DocPositionOffset_t.

} WordPositions;

Note that the key is the hashed C-string of
WordPositions

Part B: Directory Crawling – DocTable
Read through a directory in CrawlFileTree.c

For each file visited, build your DocTable and
MemIndex!

DocTable maps document names to IDs.
FNV64 is a hash function.
struct doctable_st {

 HashTable *id_to_name; // mapping doc id to doc name

 HashTable *name_to_id; // mapping docname to doc id

 DocID_t max_id; // max docID allocated so far

};

DocID_t DocTable_Add(DocTable *table, char *doc_name);

Part B: Directory Crawling – MemIndex

MemIndex is an index to view files.
It’s a HashTable of WordPostings.

typedef struct {
 char *word;
 HashTable *postings;
} WordPostings;

Let’s try to find what contains
“course”:
● WordPostings’ postings has an

element with key == 3 (Only
DocID 3 has “course in its file”)

● The value is the LinkedList of
offsets the words are in DocID 3

HashTable

LinkedList

HashTableWordPostings

DocID_t

DocPositionOffset_t

Part C: Searchshell

● Use queries to ask for a result!
○ Formatting should match example output
○ Exact implementation is up to you!

course friends my

Query MemIndex_Search(MemIndex,

QueryArray, QueryLen);

typedef struct SearchResult {

 uint64_t docid; // a document that matches a search query

 uint32_t rank; // an indicator of the quality of the match

} SearchResult, *SearchResultPtr;

Results from Query!

MemIndex.h

Hints

● Read the .h files for documentation about functions!
● Understand the high level idea and data structures before getting started
● Follow the suggested implementation steps given in the CSE 333 HW2 spec

Pointers, References, & Const

Example

Consider the following code:
int x = 5;
int& x_ref = x;
int* x_ptr = &x;

5x, x_ref 5

0x7fff...x_ptr

What are some tradeoffs to using pointers vs references?

Note syntactic similarity to
pointer declaration

Still the address-of operator!

Pointers vs. References

Pointers References

● Can move to different data via
reassignment/pointer arithmetic

● References the same data for its
entire lifetime - can’t reassign

● Can be initialized to NULL ● No sensible “default reference,”
must be an alias

● Useful for output parameters:
MyClass* output

● Useful for input parameters:
const MyClass &input

● void func(int& arg) vs. void func(int* arg)

● Use references when you don’t want to deal with pointer semantics

○ Allows real pass-by-reference

○ Can make intentions clearer in some cases

● STYLE TIP: use references for input parameters and pointers for output
parameters, with the output parameters declared last

○ Note: A reference can’t be NULL

Pointers, References, Parameters

Const
● Mark a variable with const to make

a compile time check that a variable
is never reassigned

● Does not change the underlying
write-permissions for this variable

int x = 42;

// Read only
const int* ro_x_ptr = &x;

// Can still modify x with
rw_x_ptr!
int* rw_x_ptr = &x;

// Only ever points to x
int* const x_ptr = &x;

420x7fff... 0x7fff...

xro_x_ptr rw_x_ptr

0x7fff...

x_ptr

Legend
Red = can’t change box it’s next to
Black = read and write

Exercise 1

Exercise 1

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff... x_ptrro_ptr1 0x7fff...

0x7fff... ro_ptr2

“Const pointer to an
int”

“Pointer to a const int”

ro_x_ref

Tip: Read the declaration “right-to-left”

Legend
Red = can’t change box it’s
next to
Black = read and write

Exercise 1

When would you prefer void Func(int &arg); to void Func(int *arg);? Expand on this
distinction for other types besides int.

• When you don’t want to deal with pointer semantics, use references
• When you don’t want to copy stuff over (doesn’t create a copy, especially for parameters

and/or return values), use references
• Style wise, we want to use references for input parameters and pointers for output

parameters, with the output parameters declared last

Which lines result in a compiler error?
✔ OK ❌ ERROR

bar(x_ref);
bar(ro_x_ref);
foo(x_ref);
ro_ptr1 = (int*) 0xDEADBEEF;
x_ptr = &ro_x_ref;
ro_ptr2 = ro_ptr2 + 2;
*ro_ptr1 = *ro_ptr1 + 1;

Exercise 1
void foo(const int& arg);
void bar(int& arg);

int x = 5;
int& x_ref = x;
int* x_ptr = &x;
const int& ro_x_ref = x;
const int* ro_ptr1 = &x;
int* const ro_ptr2 = &x;

5x, x_ref

0x7fff...

x_ptr
ro_ptr1 0x7fff...

0x7fff...ro_ptr2

ro_x_ref

✔
❌ ro_x_ref is const
✔
✔
❌ ro_x_ref is const
❌ ro_ptr2 is const
❌ (*ro_ptr1) is const

Legend
Red = can’t change box it’s next
to
Black = “read and write”

Objects and const Methods

#ifndef POINT_H_
#define POINT_H_

class Point {
 public:
 Point(const int x, const int y);
 int get_x() const { return x_; }
 int get_y() const { return y_; }
 double Distance(const Point& p) const;
 void SetLocation(const int& x, const int& y);

 private:
 int x_;
 int y_;
}; // class Point

#endif // POINT_H_

Cannot mutate the
object it’s called on.

Trying to change x_
or y_ inside will
produce a compiler
error!

A const class object can only
call member functions that have

been declared as const

Exercise 2

Exercise 2

✔
✔
❌
✔

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
cout << m1.get_resp();
cout << m2.get_q();

Which lines of the
snippets of code below
would cause compiler
errors?

✔ OK ❌ ERROR

const MultChoice m1(1,'A');
MultChoice m2(2,'B');
m1.Compare(m2);
m2.Compare(m1);

✔
✔
✔
❌

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

What would you change about the
class declaration to make it better?

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() { return resp_; }
 bool Compare(MultChoice &mc) const; // do these MultChoice's match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

class MultChoice {
 public:
 MultChoice(int q, char resp) : q_(q), resp_(resp) { } // 2-arg ctor
 int get_q() const { return q_; }
 char get_resp() const { return resp_; }
 bool Compare(const MultChoice &mc) const; // do these match?

 private:
 int q_; // question number
 char resp_; // response: 'A','B','C','D', or 'E'
}; // class MultChoice

• Make get_resp() const
• Make the parameter to Compare() const
• Stylistically:

o Add a setter method and default constructor
o Disable copy constructor and assignment operator

Exercise 3a

✔
✔
✔
✔
❌

✔
✔
✔
❌
✔

int z = 5;
const int* x = &z;
int* y = &z;
x = y;
*x = *y;

int z = 5;
int* const w = &z;
const int* const v = &z;
*v = *w;
*w = *v;

Which lines of the snippets of code below
would cause compiler errors?

✔ OK ❌ ERROR

Q&A :-)

Makefiles
target: src1 src2 … srcN

command/commands

Makefiles are used to manage
project recompilation. Project
structure / dependencies can
be represented as a DAG, which
a Makefile encodes to
recursively build the minimum
number of files for a target.

Exercise 5

1. Draw out Point’s DAG
○ The direction of the arrows is not important, but be consistent

2. Write a suitable Makefile for this structure

https://courses.cs.washington.edu/courses/cse333/22wi/lectures/08/08-make-22wi.pdf#page
=21

https://courses.cs.washington.edu/courses/cse333/22wi/lectures/08/08-make-22wi.pdf#page=21
https://courses.cs.washington.edu/courses/cse333/22wi/lectures/08/08-make-22wi.pdf#page=21

DAG

all

UsePoint UseThing Alone

UsePoint.o Point.o

UsePoint.cc Point.h Point.cc Thing.h UseThing.cc Alone.cc

CFLAGS = -Wall -g -std=c++17

all: UsePoint UseThing Alone

UsePoint: UsePoint.o Point.o
g++ $(CFLAGS) -o UsePoint UsePoint.o Point.o

UsePoint.o: UsePoint.cc Point.h Thing.h
g++ $(CFLAGS) -c UsePoint.cc

Point.o: Point.cc Point.h
g++ $(CFLAGS) -c Point.cc

UseThing: UseThing.cc Thing.h
g++ $(CFLAGS) -o UseThing UseThing.cc

Alone: Alone.cc
g++ $(CFLAGS) -o Alone Alone.cc

clean:
rm UsePoint UseThing Alone *.o *~

Variable

Phony target
Note: all first

Makefile

