CSE 333 Section 3 - POSIX 1/O Functions

Welcome back to section! We're happy you’re here Cege? -, %

POSIX and Files
POSIX has similar file 1/0O operations as the C stdio library, but unbuffered by default, including:

int (char *name, int flags);

- name IS a String representing the name of the file. Can be relative or absolute.

- flags is an integer code describing the access. Some common flags are listed below:
€ O RDONLY - Open the file in read-only mode.
€ O WRONLY - Open the file in write-only mode.
¢ O RDWR - Open the file in read-write mode.
¢ O APPEND - Append new information to the end of the file.

* Returns an integer which is the file descriptor. Returns -1 if there is a failure.

int (int £d);
- fd s the file descriptor (as returned by open ()).
* Returns 0 on success, -1 on failure.

ssize t (int fd, void *buf, size t count);
ssize t (int fd, const void *buf, size t count);

- fd s the file descriptor (as returned by open()).

= buf is the address of a memory area into which the data is read or written.
- count is the maximum amount of data to read from or write to the stream.
* Returns the actual amount of data read from or written to the file.

POSIX and Errors

Unfortunately, errors are not handled as nicely for the user as they are in the C stdio library. So
it is important to make sure your code handles errors gracefully. Note that:
e When an error occurs, the error number is stored in errno (defined in <errno.h>).
e You can use perror () to print out a message based on errno.
e Remember that errno is shared by all library functions and overwritten frequently, so
you must read it right after an error to be sure of getting the right code.

POSIX functions have a variety of error codes to represent different errors. Some common error
conditions:

€ EBADF - fdis not a valid file descriptor or is not open for reading.

€ EFAULT - buf is outside your accessible address space.

€ EINTR - The call was interrupted by a signal before any data was read.

€ EAGAIN - fdrefers to afile other than a socket and has been

marked nonblocking, and the read/write blocks.
& EISDIR - fd refers to a directory.

EAGAIN and EINTR are recoverable errors, unlike the rest.

POSIX and directories

POSIX calls can also be used to access directories. This is because in Linux, directories are
nothing more than special files. An example workflow might be: open a directory, iterate through
directory contents, close the directory.

DIR *opendir (const char* name) ;
- name is the directory to open. Accepts relative and absolute paths.
Can end with /', but is not necessary.
* Returns a pointer DIR* to the directory stream or NULL on error (with errno set).

int closedir (DIR *dirp);

- dirp is the directory stream to close.
* Returns 0 on success or -1 on error (with errno set).

struct dirent *readdir (DIR *dirp);
- dirp is the directory stream to process.

* Returns a pointer to a dirent structure representing the next directory entry in the
directory stream or returns NULL on error or reaching the end of the directory stream.

On Linux, the dirent structure is defined as follows:

struct dirent {
ino t d ino; /* inode number for the dir entry */
off t d off; /* not necessarily an offset */
unsigned short d reclen; /* length of this record */
unsigned char d type; /* type of file (not what you think);
not supported by all file system
types */

char d name [NAME MAX+1]; /* directory entry name*/

Exercises:

1) Why might a POSIX standard be beneficial? From an application perspective? Versus using
the C stdio library?

2) A common use of the POSIX I/O function is to write to a file; fill in the code skeleton below
that writes all of the contents of a string buf to the file 333. txt.

int fd = ; // open 333.txt
int n =;
char *buf = ; // Assume buf initialized with size n

int result;

; // initialize wvariable for loop

// code that populates buf happens here

while () |
result = write(’ ') ;
if (result == -1) {
if (errno != EINTR && errno != EAGAIN) {
// a real error happened, return an error result
; // cleanup

perror ("Write failed");
return -1;

}
continue; // EINTR or EAGAIN happened, so loop and try again

; // update loop variable

; // cleanup

3) Why is it important to store the return value from the write () function? Why do we not
check for a return value of 0 like we do for read () ?

4) Why is it important to remember to call the close () function once you have finished
working on a file?

Exercise:

5) Given the name of a directory, write a C program that is analogous to 1s, i.e. prints the
names of the entries of the directory to stdout. Be sure to handle any errors!
Example usage: “. /dirdump <path>" where <path> can be absolute or relative.

int main(int argc, char** argv) {
/* 1. Check to make sure we have a valid command line arguments */

/* 2. Open the directory, look at opendir () */

/* 3. Read through/parse the directory and print out file names
Look at readdir () and struct dirent */

/* 4. Clean up */

Exercise (bonus):

6) Given the name of a file as a command-line argument, write a C program that is analogous
to cat, i.e. one that prints the contents of the file to stdout. Handle any errors!

Example usage: “. /filedump <path>”" where <path> can be absolute or relative.

int main(int argc, char** argv) {
/* 1. Check to make sure we have valid command line arguments */

/* 2. Open the file, use O RDONLY flag */

/* 3. Read from the file and write it to standard out. Try doing
this without using printf () and instead have write() pipe to
Stdout (take a look at STDOUT FILENO). It might be helpful
to initialize a buffer variable (of size 1024 bytes should be
fine) to pass in to read() andwrite(). */

/*4. Clean up */

