CSE 333

Section 3
POSIX I/0O

YA/ UNIVERSITY of WASHINGTON

Checking In & Logistics

Check In

Do you have any questions,
comments, or concerns?

Exercises going ok?

Lectures making sense?

Reminders

Homework 1 due Thursday (10/9) (Today!) @
11:59 PM

- You have until Sunday @ 11:59 PM with 2
late days!

Exercise 7 out tomorrow (based on sections
today); also due Monday (10/13): @ 10:00 AM

POSIX

POSIX (Portable Operating System Interface)

A family of IEEE standards that maintains compatibility
across variants of Unix-like operating systems for basic 1/O
(file, terminal, and network) and for threading.

1. Why might a POSIX standard be beneficial (e.g., from an application
perspective or vs. the C stdio library)?

e More explicit control since read and write functions are system calls and
you can directly access system resources. (G
e POSIX calls are unbuffered so you can implement your own buffer

strategy on top of read()/write().
e There is no standard higher level API for network and other I/O devices 4

What's Tricky about (POSIX) File 1/0?

e Communication with input and output devices doesn’t

% always work as expected
o Some details might be unknown (e.g., size of a file)
o May not process all data or fail, necessitating read/write loops

e Different system calls have a variety of different failure

modes and error codes
o Look up in the documentation and use pre-defined constants!

o Lots of error-checking code needed
m Need to handle resource cleanup on every termination pathway

Messy Roommate

/0 Analogy — Messy Roommate

e The Linux kernel (Tux) now lives with you
in room #333

e There are N pieces of trash in the room

e There is a single trash can, char bin[N]
o (For some reason, the trash goes in a particular order)

e You can tell your roommate to pick it up, but they are
unreliable

https://en.wikipedia.org/wiki/Tux_(mascot)

/0 Analogy — Messy Roommate

num_trash = Pickup(room_num, trash_bin, amount)

“| tried to start cleaning, but something came up” num_trash == -1
(got hungry, had a midterm, room was locked, etc.) ' errno == excuse
“You told me to pick up trash, but the room was num_trash ==
already clean”

“I picked up some of it, but then | got distracted by num_trash < amount
my favorite show on Nefflix’

“I did it! | picked up all the trash!” num_trash == amount

num_trash = Pickup(room_num, trash_bin, amount)

num_trash == -1, errno == excuse

How do we get room 333 clean?

num_trash == 0
T‘ num_trash < Amount

G R num_trash == Amount

- \ | What do we
bin(N-1] doin the
following
N\ W scenarios?

How do we get room 333 clean

[1

| I'have to study
| N for cse333! I'll

+ ul Il .
. do it later.
o p. fres
1 / r. i - =
// NS '
V X : ! |
— | } AN\ N

num_trash pickup(roomNum, trashBin, Amount)

Limm_trash == -1, errno == excuse I

" hum_trash == 0

num_trash < Amount

num_trash == Amount

bin[N-1]

Decide if the
excuse is
reasonable,
and either
let it be or
ask again.

10

How do we get room 333 cleanp—

,T

The room is
already clean,
dawg!

num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

== 0 I

num_trash < Amount

num_trash == Amount

bin[N-1]

Stop asking
them to clean
the room!
There's
nothing to do.

11

num_trash pickup(roomNum, trashBin, Amount)

How do we get room 333 clean.num o
N I num_trash < Amount I
/ num_trash == Amount
| LT T 11
l | picked up 3 Ask them

whole pieces of
i ~ | trash! What more

Al me?

bin[N-1]

Eh

again to pick
up the rest
of it.

12

num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

How do we get room 333 clean.num s

num_trash < Amount

I num_trash == Amount I

| They did

| | [1diditt The bin[N-1] what you

G ~ ~Il | | whole room

7 s finany — asked, so
1) clean.

stop asking
them to pick
up trash.

CEEEEE

13

Review from Lecture - POSIX Read

ssize_t read(int fd, void *buf, size_t count);

An error occurred result == -1
errno = error

Nothing left to read (already at EOF) result == 0
Partial Read result < count

Success! result == count

https://man7.org/linux/man-pages/man2/read.2.htmi ”

Not fully
comprehensive, pl

ease

refer to the man p4

O

|-y

errno

EINTR

RECOVERABLE.
TRY AGAIN!

EXIT.

. Read
Return
Value
FIDISHED
READING THE
FILE.
Other
errno
UNRECOVERABLE.

ERROR MESSAGE.

Count

YOU'RE
DOonE!

=
Count

KEEP

READING.

15

int open(char xname, int flags);
- name is a string representing the name of the file. Can be relative or
absolute.
= flags is an integer code describing the access. Some common flags
are listed below:
& O_RDONLY - Open the file in read-only mode.
€ O_WRONLY - Open the file in write-only mode.
¢ O_RDWR Open the file in read-write mode.
¢ O_APPEND - Append new information to the end of the file.

Exe rCises 2 -4 * E(ialhurzs an integer which is the file descriptor. Returns -1 if there is a

ssize_t read(int fd, void xbuf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
= fdisthe file descriptor (as returned by open()).
- buf isthe address of a memory area into which the data is read or
written.
- count is the maximum amount of data to read from or write to the

stream.
* Returns the actual amount of data read from or written to the file.

int close(int fd); 4",

int fd = open("333.txt", O_WRONLY)
intn=...;

char *buf = ...; // Assume buf initialized with size n
int result;

5 // open 333.txt

; // initialize variable for Tloop

char *ptr = buf
// code that populates buf happens here

while (ptr < buf + n) {
result = write(, ,)3
—fd —ptr —buft ¥+ n - ptr A
if (result == -1) {

if (errno != EINTR && errno != EAGAIN) { (n) This is just ONE

// a real error happened, return an error result

// cleanup pOSSible way to solve

perrorsl'wftite faileél"); this exercise!

return -1;

}
continue; // EINTR or EAGAIN happened, so loop around and try again

; // update loop variable

3 —ptr—=Tesutt
e

// cleanup 17

POSIX Analysis &

3. Why is it important to store the return value from write?
Why don’t we check for a return value of 0 like read?
write may not actually write all the bytes specified in count.

The 0 case for reading was EOF, but writing adds length to your file
and we know exactly how much we are trying to write.

4. Why is it important to remember to call close once

you have finished working on a file?
In order to free resources (i.e., locks on those files, file descriptor
table entries).

18

There is No One True Loop!!!

You will need to tailor your POSIX loops to the specifics of
what you need.

Some design considerations:

e Read data in fixed-sized chunks or all at once?
o Trade-off in disk accesses versus memory usage.
e What if we don’'t know N (how many bytes to read) ahead of time?
o Keep calling read until we get © back (EOF).
o Can determine N dynamically by tracking the number of bytes read and
using malloc/realloc to allocate more space as we go.

o This case comes up when reading/writing to the network (later in 333)! .

Directories

»

Directories

e A directory is a special file that stores the names and

locations of the related files/directories
o This includes itself (.), its parent directory (. .), and all of its
children (i.e., the directory's contents)
o Take CSE 451 to learn more about the directory structure

e Accessible via POSIX (dirent.hin C/C++)

e \Why might we want to work with directories in a program?
List files, find files, search files, recursively traverse directories, efc.

21

POSIX Directory Basics

e POSIX defines operations for directory traversal
o DIR =*is not a file descriptor, but used similarly

o struct dirent describes a directory entry
o readdir () returns the ‘next’ directory entry, or NULL at end

e Error values (they also set errno):
©0 DIR *opendir(const char *name); // NULL
O struct dirent *readdir(DIR *dirp); // NULL
0 int closedir(DIR *dirp); // -1

struct dirent

e Returned value from readdir
o Does not need to be “freed” or “cIose_Q” g!;

e Fields are “unspecified” (depends on your file system)

o glibc specifies: struct dirent {
ino_t d_ino;
off_t d_off;
unsigned short d_reclen;
unsigned char d_type;
char d_name[256] ;

directory entry
metadata stored
in integer types

I

Null-terminated directory entry

name (what we care about in 333) 23

readdir Example

~/tiny_dir/ . - hi . txt ‘J
— [i

internal dir ptr:

==DIR *dirp = opendir("~/tiny_dir'"); // opens directory
m=sstruct dirent xfile = readdir(dirp); // gets ptr to "."
- file = readdir (dirp); // gets ptr to ".."

= file = readdir(dirp); // gets ptr to "hi.txt"

== file = readdir(dirp); // gets NULL

== closedir(dirp); // clean up

24

Exercise 5

Given the name of a directory, write a C program that is analogous to Is, i.e.
prints the names of the entries of the directory to stdout. Be sure to handle
any errors!
int main(int argc, char*xx argv) {
/* 1. Check to make sure we have a valid command line arguments *x/
if (argec !'= 2) {
fprintf(stderr, "Usage: ./dirdump <path>\n");
return EXIT_FAILURE;
}

/* 2. Open the directory, look at opendir() */
DIR *dirp = opendir(argv[1l]);

if (dirp == NULL) {
fprintf(stderr, "Could not open directory\n");
return EXIT_FAILURE;

Given the name of a directory, write a C program that is analogous to Is, i.e.
prints the names of the entries of the directory to stdout. Be sure to handle
any errors!

/* 3. Read through/parse the directory and print out file names
Look at readdir () and struct dirent */
struct dirent *entry;
entry = readdir(dirp);
while (entry != NULL) {
printf("%s\n", entry->d_name) ;
entry = readdir(dirp);
+

/* 4. Clean up */
closedir(dirp);

return EXIT_SUCCESS;

27

	Slide 1: CSE 333 Section 3
	Slide 2: Checking In & Logistics
	Slide 3: POSIX
	Slide 4: POSIX (Portable Operating System Interface)
	Slide 5: What’s Tricky about (POSIX) File I/O?
	Slide 6: Messy Roommate
	Slide 7: I/O Analogy – Messy Roommate
	Slide 8: I/O Analogy – Messy Roommate
	Slide 9: How do we get room 333 clean?
	Slide 10: How do we get room 333 clean?
	Slide 11: How do we get room 333 clean?
	Slide 12: How do we get room 333 clean?
	Slide 13: How do we get room 333 clean?
	Slide 14: Review from Lecture – POSIX Read
	Slide 15
	Slide 16: Exercises 2-4
	Slide 17
	Slide 18: POSIX Analysis
	Slide 19: There is No One True Loop!!!
	Slide 20: Directories
	Slide 21: Directories
	Slide 22: POSIX Directory Basics
	Slide 23: struct dirent
	Slide 24: readdir Example
	Slide 25: Exercise 5
	Slide 26
	Slide 27

