
CSE 333
Section 3
POSIX I/O



Checking In & Logistics

Check In

Do you have any questions, 

comments, or concerns?

Exercises going ok?

Lectures making sense?

2

Reminders

Homework 1 due Thursday (10/9) (Today!) @ 

11:59 PM

- You have until Sunday @ 11:59 PM with 2 

late days!

Exercise 7 out tomorrow (based on sections 

today); also due Monday (10/13): @ 10:00 AM



POSIX

3



POSIX (Portable Operating System Interface)

A family of IEEE standards that maintains compatibility 

across variants of Unix-like operating systems for basic I/O 

(file, terminal, and network) and for threading.

1. Why might a POSIX standard be beneficial (e.g., from an application 

perspective or vs. the C stdio library)?

4

● More explicit control since read and write functions are system calls and 

you can directly access system resources.

● POSIX calls are unbuffered so you can implement your own buffer 

strategy on top of read()/write().

● There is no standard higher level API for network and other I/O devices



What’s Tricky about (POSIX) File I/O?

● Communication with input and output devices doesn’t 

always work as expected

○ Some details might be unknown (e.g., size of a file)

○ May not process all data or fail, necessitating read/write loops

● Different system calls have a variety of different failure 

modes and error codes

○ Look up in the documentation and use pre-defined constants!

○ Lots of error-checking code needed

■ Need to handle resource cleanup on every termination pathway
5



Messy Roommate

6



I/O Analogy – Messy Roommate

7

● The Linux kernel (Tux) now lives with you 

in room #333

● There are N pieces of trash in the room

● There is a single trash can,  char bin[N]
○ (For some reason, the trash goes in a particular order)

● You can tell your roommate to pick it up, but they are 

unreliable

https://en.wikipedia.org/wiki/Tux_(mascot)


I/O Analogy – Messy Roommate

num_trash = Pickup(room_num, trash_bin, amount)

“I tried to start cleaning, but something came up”

(got hungry, had a midterm, room was locked, etc.)

num_trash == -1
errno == excuse

“You told me to pick up trash, but the room was 

already clean”

num_trash == 0

“I picked up some of it, but then I got distracted by 

my favorite show on Netflix”

num_trash < amount

“I did it! I picked up all the trash!” num_trash == amount

8



How do we get room 333 clean?

num_trash = Pickup(room_num, trash_bin, amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]

What do we 

do in the 

following 

scenarios?

9



How do we get room 333 clean?

num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]I have to study 

for cse333! I’ll 
do it later.

Decide if the 

excuse is 

reasonable, 

and either 

let it be or 

ask again.

10



How do we get room 333 clean?

num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]The room is 

already clean, 
dawg!

Stop asking 

them to clean 

the room! 

There’s 

nothing to do.

11



How do we get room 333 clean?

num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]

Ask them 

again to pick 

up the rest 

of it.

I picked up 3 

whole pieces of 
trash! What more 
do you want from 

me?

12



How do we get room 333 clean?

num_trash pickup(roomNum, trashBin, Amount)

num_trash == -1, errno == excuse

num_trash == 0

num_trash < Amount

num_trash == Amount

bin[0]

bin[N-1]

They did 

what you 

asked, so 

stop asking 

them to pick 

up trash.

I did it! The 

whole room 
is finally 
clean.

13



Review from Lecture – POSIX Read

ssize_t read(int fd, void *buf, size_t count);

An error occurred result == -1
errno = error

Nothing left to read (already at EOF) result == 0

Partial Read result < count

Success! result == count

14
https://man7.org/linux/man-pages/man2/read.2.html



15

Not fully 

comprehensive, please 
refer to the man pages



Exercises 2-4

16

int open(char *name, int flags);
➔ name is a string representing the name of the file. Can be relative or 

absolute.
➔ flags is an integer code describing the access. Some common flags 

are listed below:
◆ O_RDONLY – Open the file in read-only mode.

◆ O_WRONLY – Open the file in write-only mode.

◆ O_RDWR  – Open the file in read-write mode.

◆ O_APPEND – Append new information to the end of the file.

★ Returns an integer which is the file descriptor.  Returns -1 if there is a 

failure.

ssize_t read(int fd, void *buf, size_t count);  

ssize_t write(int fd, const void *buf, size_t count);
➔ fd is the file descriptor (as returned by open()).

➔ buf is the address of a memory area into which the data is read or 

written.

➔ count is the maximum amount of data to read from or write to the 

stream.

★ Returns the actual amount of data read from or written to the file.

int close(int fd);



17

int fd = __________________________________________; // open 333.txt
int n = ...;
char *buf = ...; // Assume buf initialized with size n
int result;

______________________________; // initialize variable for loop

... // code that populates buf happens here

while (_______________________) {

result = write(_______, _______________, _______________________);

if (result == -1) {
if (errno != EINTR && errno != EAGAIN) {

// a real error happened, return an error result
___________________;  // cleanup
perror("Write failed");
return -1;

}
continue; // EINTR or EAGAIN happened, so loop around and try again

}
________________________________;  // update loop variable

}
________________; // cleanup

open("333.txt", O_WRONLY)

char *ptr = buf

ptr < buf + n

fd       ptr              buf + n - ptr

close(fd)

ptr += result

close(fd)

( ) This is just ONE 

possible way to solve 

this exercise!



POSIX Analysis

3. Why is it important to store the return value from write?  

Why don’t we check for a return value of 0 like read?

4. Why is it important to remember to call close once 

you have finished working on a file?

18

write may not actually write all the bytes specified in count.

The 0 case for reading was EOF, but writing adds length to your file 

and we know exactly how much we are trying to write.

In order to free resources (i.e., locks on those files, file descriptor 

table entries).



There is No One True Loop!!!

You will need to tailor your POSIX loops to the specifics of 

what you need.

Some design considerations:

● Read data in fixed-sized chunks or all at once?

○ Trade-off in disk accesses versus memory usage.

● What if we don’t know N (how many bytes to read) ahead of time?

○ Keep calling read until we get 0 back (EOF).

○ Can determine N dynamically by tracking the number of bytes read and 

using malloc/realloc to allocate more space as we go.

○ This case comes up when reading/writing to the network (later in 333)!
19



Directories

20



Directories

● A directory is a special file that stores the names and 

locations of the related files/directories

○ This includes itself (.), its parent directory (..), and all of its 

children (i.e., the directory's contents)

○ Take CSE 451 to learn more about the directory structure

● Accessible via POSIX (dirent.h in C/C++)

● Why might we want to work with directories in a program?

21

List files, find files, search files, recursively traverse directories, etc.



POSIX Directory Basics

● POSIX defines operations for directory traversal

○ DIR * is not a file descriptor, but used similarly

○ struct dirent describes a directory entry

○ readdir() returns the ‘next’ directory entry, or NULL at end

● Error values (they also set errno):

○ DIR *opendir(const char *name); // NULL

○ struct dirent *readdir(DIR *dirp); // NULL

○ int closedir(DIR *dirp); // -1

22



struct dirent

● Returned value from readdir
○ Does not need to be “freed” or “closed” 

● Fields are “unspecified” (depends on your file system)

○ glibc specifies:

23

struct dirent {
ino_t d_ino;
off_t d_off;
unsigned short d_reclen;
unsigned char d_type;
char d_name[256];

};

Null-terminated directory entry 

name (what we care about in 333)

directory entry 

metadata stored 

in integer types}



readdir Example

DIR *dirp = opendir("~/tiny_dir");

struct dirent *file = readdir(dirp);

file = readdir(dirp);

file = readdir(dirp);

file = readdir(dirp);

closedir(dirp);
24

~/tiny_dir/ hi.txt...

internal dir ptr:

// opens directory

// gets ptr to "."

// gets ptr to ".."

// gets ptr to "hi.txt"

// gets NULL

// clean up



Exercise 5

25



26

Given the name of a directory, write a C program that is analogous to ls, i.e.

prints the names of the entries of the directory to stdout. Be sure to handle 

any errors!
int main(int argc, char** argv) {

/* 1. Check to make sure we have a valid command line arguments */

/* 2. Open the directory, look at opendir() */

...

if (argc != 2) {

fprintf(stderr, "Usage: ./dirdump <path>\n");

return EXIT_FAILURE;

}

DIR *dirp = opendir(argv[1]);

if (dirp == NULL) {

fprintf(stderr, "Could not open directory\n");

return EXIT_FAILURE;

}



27

Given the name of a directory, write a C program that is analogous to ls, i.e.

prints the names of the entries of the directory to stdout. Be sure to handle 

any errors!
...

/* 3. Read through/parse the directory and print out file names

Look at readdir() and struct dirent */

/* 4. Clean up */

}

struct dirent *entry;

entry = readdir(dirp);

while (entry != NULL) {

}

closedir(dirp);

return EXIT_SUCCESS;

printf("%s\n", entry->d_name);

entry = readdir(dirp);


	Slide 1: CSE 333 Section 3
	Slide 2: Checking In & Logistics 
	Slide 3: POSIX
	Slide 4: POSIX (Portable Operating System Interface)
	Slide 5: What’s Tricky about (POSIX) File I/O?
	Slide 6: Messy Roommate
	Slide 7: I/O Analogy – Messy Roommate
	Slide 8: I/O Analogy – Messy Roommate 
	Slide 9: How do we get room 333 clean?
	Slide 10: How do we get room 333 clean?
	Slide 11: How do we get room 333 clean?
	Slide 12: How do we get room 333 clean?
	Slide 13: How do we get room 333 clean?
	Slide 14: Review from Lecture – POSIX Read
	Slide 15
	Slide 16: Exercises 2-4
	Slide 17
	Slide 18: POSIX Analysis
	Slide 19: There is No One True Loop!!!
	Slide 20: Directories
	Slide 21: Directories
	Slide 22: POSIX Directory Basics
	Slide 23: struct dirent
	Slide 24: readdir Example
	Slide 25: Exercise 5
	Slide 26
	Slide 27

