CSE 333 25au 10 STAGES OF DEBUGGING
Section 2 O0D® OS50

Debugging and Structs

YW UNIVERSITY of WASHINGTON

Checking In & Logistics

e Exercise 3: Any questions, comments, or
o Due Tomorrow @ 10:00 AM concerns?
e Homework 1: e Exercises going ok?
o Due next Thursday @ 11:59 e Lectures making sense?
PM (10/9)

o Start Early!

Structs and Typedef Review

Defining Structs

e To define a struct, we use the struct statement, which typically has a name

(a tag) and must have one or more data members
o This defines a new data type!

struct simplestring_st {
char* word;
int length;

I

struct simplestring_st my_word;

Typedef

e The C Programming language provides the keyword typedef, which defines

an alias (alternate name) for an existing data type
o This can be used in combination with a struct statement

struct simplestring_st { typedef struct simplestring_st {
char* word; char*x word;
int length; int length;

}s } SimpleString;

typedef struct simplestring_st SimpleString; SimpleString my_word;
SimpleString my_word;

Structs and Memory Diagrams

® struct instance is a box, with individual boxes for fields inside of it,

labelled with field names
o Even though we know that field ordering is guaranteed, we can be loose
with where we place the fields in our diagram

typedef struct simplestring_st {

char* word; ?
int length; word

} SimpleString; my_word

SimpleString my_word; tength| 7

Structs and Pointers

e “.”toaccessfield from struct instance
e “->"to access field from struct pointer

char cse333[] = '"cse333";
SimpleString c¢se333_ss;
SimpleString* cse333_ptr = &cse333_ss;

typedef struct simplestring_st {
charx word;
int length;
} SimpleString; cse333_ss.word = cse333;
cse333_ptr->length = strlen(cse333);

cse333_ptr

word

cse333_ss

length 6 C56333 |C| |S| lel |3| |3| |3| |\O|

Passing Structs as Parameters

e Assignment copies over all of the field values
o Unlike reference copying in Java

e Structs are call-by-value (as arguments and return values)

o Can imitate call-by-reference by passing pointer to struct instance
instead

Debugging Tools

Debugging

° Debugging is a skill that you will need throughout your career!

e The 333 projects are big with lots of potential for bugs
o Learning to use the debugging tools will make your life a lot easier
o Course staff will help you learn the tools in office hours, too

e Debugging tool output can be scary at first, but extremely useful once you
know how to parse it

10

Debugging Strategies

Many debugging strategies exist but here’s a simple 5 step process!

Observation: Something is wrong with your program!
Hypothesis: What do you think is going wrong?

Experiment: Use debuggers and other tools to verify the problem
Analyze: Identify and implement a fix to the problem.

Repeat steps 1-4 until bug free!

o~ owObdb-=

11

Key debugging skills to master

1. Stop at “interesting” places
o Debug after a crash or segfault
o Use breakpoints to stop during execution

2. Look around when stopped
o Print values of variables
o Look at source code
o Look up/down call chain

3. Resume execution
o Incrementally, step at a time
o Until next breakpoint
o Until finished

12

333 Debugging Options

e gdb (GNU Debugger) is a general-purpose debugging tool
o Stops at breakpoints and program crashes
o Lots of helpful features for tracing code, checking current expression values, and
examining memory

e valgrind specifically check for memory errors
o Great for catching non-crashing odd behavior (e.g., using uninitialized values,
memory leaks on the heap)
o If your code uses malloc, should use —-leak-check=full option

13

Basic Functions in GDB

e Setting breakpoints: e Reading Values

O break <filename>:<line#> O print — evaluate expression once
e Advancing o display — keep evaluating

O step - into functions expression

o next — over functions e Examining memory

o continue — to next break o x — dereference provided address

O bt — backtracing
e Reference Card:
https://courses.cs.washington.edu/courses/cse333/25au/debug/gdb refcard.pdf

14

https://courses.cs.washington.edu/courses/cse333/25au/debug/gdb_refcard.pdf

Hello World!
Common Errors

Segmentation fault (core dumped)

e Misusing Functions: Read documentation (online, through man pages, or

the . h files for your homework) for function parameters and function purpose
o Oftentimes, this leads to unexpected results!

e Segmentation Fault: Dereferencing an uninitialized pointer, NULL, a
previously-freed pointer, or many other things.

o GDB automatically halts execution when SIGSEGV is received, useful for
debugging

e Memory “Errors”: Many possible errors, commonly use of uninitialized

memory or “memory leaks” (data allocated on heap that does not get free’'d).
o Use valgrind to help catch memory errors!

15

Trying to Run reverse.c

We have a program reverse. c that accepts a string from the user and reverses
it!

But it has a few problems... let’s take a look!

16

Exercise 1

Complete the Memory Diagram

int main() { The Stack

me) char 1line[MAX_STR];

mm) char* rev_line; main()

char line[] ||'c' 's'|'e'|'3'|'3"’

.\@.ll

ms) printf("Please enter a string: ");
ﬂfgets(l'ine, MAX_STR, std'in); charx rev_1line ?
m) rev_Lline = reverse(line);

. reve rsey

char* s -

*unreached code omitted for space

18

Complete the Memory Diagram

charx reverse(charx s) {
mm) char* result = NULL;

mp int L, R;

mm) char ch; char Tline[]
mm) strcpy(result, s); charx rev_1line
charx s

charx result

*unreached code omitted for space

char ch

The Stack

main()

|||C| ISI lel l3l |3| |3|

.\0.||

reverse()

—

NULL

int L

int R

19

Completed Memory Diagram

The Stack

reverse()

main() charx s

l

I

. /
char line[] char* result|NULL

|C| ISI Iel |3| l3l |3| I\Ol

char ch | ?

char*x rev_1line ? int L ?

int R | ?

Exercise 2 & 3

Fix 1: Segfault

e Tool help: runin gdb to find segfault, man for strncpy, bt to find segfault
occurrence

e Old version:
result = NULL;
strcpy(result, s);

e New version:
result = (charx) malloc(strsize);
strncpy(result, s, strsize);

22

Fix 2: Doesn't reverse string

e Tool help: runin gdb, break on reverse (), step through code, print /s
word at end of function (prints as string)

e Old version:
char ch;
int L = 0, R

strlen(result);

e New version:
char ch;
int L = 0, R = strlen(result) - 1;

23

Fix 3: Memory leaks
e Tool help: run under valgrind, identify un-freed allocation line numbers

e Old version:
charx reverse(charx s) {
return result; }
® New version:
charx reverse(charx s) {
return result; }
At end of main: free(rev_1line);

24

Style Fixes

e Tool help: None? Lecture slides! Google C++ Style Guide!

e malloc error checking:
result = (charx) malloc(strsize);
if (result == NULL) {
// sample error checking. Read the spec on the requirements
// for handling malloc!
exit (EXIT_FAILURE);

}

® Remember to do this for the sake of code style! Malloc errors are rare, but we still
check for failure to keep our code consistent

25

	Slide 1: CSE 333 25au Section 2
	Slide 2: Checking In & Logistics
	Slide 3: Structs and Typedef Review
	Slide 4: Defining Structs
	Slide 5: Typedef
	Slide 6: Structs and Memory Diagrams
	Slide 7: Structs and Pointers
	Slide 8: Passing Structs as Parameters
	Slide 9: Debugging Tools
	Slide 10: Debugging
	Slide 11: Debugging Strategies
	Slide 12: Key debugging skills to master
	Slide 13: 333 Debugging Options
	Slide 14: Basic Functions in GDB
	Slide 15: Common Errors
	Slide 16: Trying to Run reverse.c
	Slide 17: Exercise 1
	Slide 18: Complete the Memory Diagram
	Slide 19: Complete the Memory Diagram
	Slide 20: Completed Memory Diagram
	Slide 21: Exercise 2 & 3
	Slide 22: Fix 1: Segfault
	Slide 23: Fix 2: Doesn’t reverse string
	Slide 24: Fix 3: Memory leaks
	Slide 25: Style Fixes

