
CSE 333 25au
Section 2
Debugging and Structs

Checking In & Logistics
Any questions, comments, or

concerns?

● Exercises going ok?

● Lectures making sense?

2

● Exercise 3:

○ Due Tomorrow @ 10:00 AM

● Homework 1:

○ Due next Thursday @ 11:59

PM (10/9)

○ Start Early!

Structs and Typedef Review

3

Defining Structs

● To define a struct, we use the struct statement, which typically has a name

(a tag) and must have one or more data members

○ This defines a new data type!

4

struct simplestring_st {

char* word;

int length;

};

struct simplestring_st my_word;

Typedef

● The C Programming language provides the keyword typedef, which defines

an alias (alternate name) for an existing data type

○ This can be used in combination with a struct statement

typedef struct simplestring_st {

char* word;

int length;

} SimpleString;

SimpleString my_word;

struct simplestring_st {

char* word;

int length;

};

typedef struct simplestring_st SimpleString;

SimpleString my_word;

5

Structs and Memory Diagrams

● struct instance is a box, with individual boxes for fields inside of it,

labelled with field names

○ Even though we know that field ordering is guaranteed, we can be loose

with where we place the fields in our diagram

6

typedef struct simplestring_st {

char* word;

int length;

} SimpleString;

SimpleString my_word;
?

my_word
length

word
?

Structs and Pointers

● “.” to access field from struct instance

● “->” to access field from struct pointer

char cse333[] = "cse333";

SimpleString cse333_ss;

SimpleString* cse333_ptr = &cse333_ss;

cse333_ss.word = cse333;

cse333_ptr->length = strlen(cse333);

6
cse333_ss

length

word

'c' 's' 'e' '3' '3' '3' '\0'cse333

cse333_ptr

7

typedef struct simplestring_st {

char* word;

int length;

} SimpleString;

Passing Structs as Parameters

● Assignment copies over all of the field values

○ Unlike reference copying in Java

● Structs are call-by-value (as arguments and return values)

○ Can imitate call-by-reference by passing pointer to struct instance

instead

8

Debugging Tools

9

Debugging

● Debugging is a skill that you will need throughout your career!

● The 333 projects are big with lots of potential for bugs

○ Learning to use the debugging tools will make your life a lot easier

○ Course staff will help you learn the tools in office hours, too

● Debugging tool output can be scary at first, but extremely useful once you

know how to parse it

10

Debugging Strategies

Many debugging strategies exist but here’s a simple 5 step process!

1. Observation: Something is wrong with your program!

2. Hypothesis: What do you think is going wrong?

3. Experiment: Use debuggers and other tools to verify the problem

4. Analyze: Identify and implement a fix to the problem.

5. Repeat steps 1-4 until bug free!

11

Key debugging skills to master
1. Stop at “interesting” places

○ Debug after a crash or segfault
○ Use breakpoints to stop during execution

2. Look around when stopped
○ Print values of variables
○ Look at source code
○ Look up/down call chain

3. Resume execution
○ Incrementally, step at a time
○ Until next breakpoint
○ Until finished

12

333 Debugging Options

● gdb (GNU Debugger) is a general-purpose debugging tool

○ Stops at breakpoints and program crashes

○ Lots of helpful features for tracing code, checking current expression values, and

examining memory

● valgrind specifically check for memory errors

○ Great for catching non-crashing odd behavior (e.g., using uninitialized values,

memory leaks on the heap)

○ If your code uses malloc, should use --leak-check=full option

13

Basic Functions in GDB

● Setting breakpoints:

○ break <filename>:<line#>

● Advancing

○ step – into functions

○ next – over functions

○ continue – to next break

14

● Reading Values

○ print – evaluate expression once

○ display – keep evaluating

expression

● Examining memory

○ x – dereference provided address

○ bt – backtracing

● Reference Card:
https://courses.cs.washington.edu/courses/cse333/25au/debug/gdb_refcard.pdf

https://courses.cs.washington.edu/courses/cse333/25au/debug/gdb_refcard.pdf

Common Errors

● Misusing Functions: Read documentation (online, through man pages, or

the .h files for your homework) for function parameters and function purpose

○ Oftentimes, this leads to unexpected results!

● Segmentation Fault: Dereferencing an uninitialized pointer, NULL, a

previously-freed pointer, or many other things.

○ GDB automatically halts execution when SIGSEGV is received, useful for

debugging

● Memory “Errors”: Many possible errors, commonly use of uninitialized

memory or “memory leaks” (data allocated on heap that does not get free’d).

○ Use valgrind to help catch memory errors!
15

Trying to Run reverse.c

We have a program reverse.c that accepts a string from the user and reverses

it!

But it has a few problems… let’s take a look!

16

Exercise 1

17

Complete the Memory Diagram
int main() {
char line[MAX_STR];
char* rev_line;

printf("Please enter a string: ");
fgets(line, MAX_STR, stdin);
rev_line = reverse(line);
.
.
.

18*unreached code omitted for space

The Stack

main()

reverse()

char line[]

?char* rev_line

'c''s''e''3''3''3' '\0'

char* s

Complete the Memory Diagram
char* reverse(char* s) {
char* result = NULL;
int L, R;
char ch;

strcpy(result, s);
.
.
.

19*unreached code omitted for space

The Stack

reverse()

NULL ?

?

?

main()

?char* rev_line

'c''s''e''3''3''3' '\0'

char* s

char* result

char ch

int L

int R

char line[]

The Stack

Completed Memory Diagram

20

main()

reverse()

char line[]

'c' 's' 'e' '3' '3' '3' '\0'

?char* rev_line

char* s

char* result NULL

?char ch

?

?int L

int R

Exercise 2 & 3

21

Fix 1: Segfault

● Tool help: run in gdb to find segfault, man for strncpy,bt to find segfault

occurrence

● Old version:

result = NULL;

strcpy(result, s);

● New version:

result = (char*) malloc(strsize);

strncpy(result, s, strsize);

22

Fix 2: Doesn’t reverse string

● Tool help: run in gdb, break on reverse(), step through code, print /s

word at end of function (prints as string)

● Old version:

char ch;

int L = 0, R = strlen(result);

● New version:

char ch;

int L = 0, R = strlen(result) - 1;

23

Fix 3: Memory leaks

● Tool help: run under valgrind, identify un-freed allocation line numbers

● Old version:

char* reverse(char* s) { ...

return result; }

● New version:

char* reverse(char* s) { ...

return result; }

At end of main: free(rev_line);

24

Style Fixes

● Tool help: None? Lecture slides! Google C++ Style Guide!

● malloc error checking:

result = (char*) malloc(strsize);

if (result == NULL) {

// sample error checking. Read the spec on the requirements

// for handling malloc!

exit(EXIT_FAILURE);

}

● Remember to do this for the sake of code style! Malloc errors are rare, but we still

check for failure to keep our code consistent

25

	Slide 1: CSE 333 25au Section 2
	Slide 2: Checking In & Logistics
	Slide 3: Structs and Typedef Review
	Slide 4: Defining Structs
	Slide 5: Typedef
	Slide 6: Structs and Memory Diagrams
	Slide 7: Structs and Pointers
	Slide 8: Passing Structs as Parameters
	Slide 9: Debugging Tools
	Slide 10: Debugging
	Slide 11: Debugging Strategies
	Slide 12: Key debugging skills to master
	Slide 13: 333 Debugging Options
	Slide 14: Basic Functions in GDB
	Slide 15: Common Errors
	Slide 16: Trying to Run reverse.c
	Slide 17: Exercise 1
	Slide 18: Complete the Memory Diagram
	Slide 19: Complete the Memory Diagram
	Slide 20: Completed Memory Diagram
	Slide 21: Exercise 2 & 3
	Slide 22: Fix 1: Segfault
	Slide 23: Fix 2: Doesn’t reverse string
	Slide 24: Fix 3: Memory leaks
	Slide 25: Style Fixes

