WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

Server-side Networking
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

Socket API: Server TCP Connection

- Pretty similar to clients, but with additional steps:
1) Figure out the IP address and port on which to listen
2) Create a socket
3) bind () the socket to the address(es) and port
4) Tell the socket to 1isten() for incoming clients
5) accept () aclient connection, which creates a new socket for it
6) read () andwrite () to that new client socket
7) close () the client socket

8) Rinse and repeat

WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

The idea with listener sockets

https://www.yelp.com/biz_photos/tea-era-mountain-view-
2?select=_EH3rl_MLPFIIColyFFxaw

WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

Servers

+» Servers can have multiple IP addresses (“multihoming”)

= Usually have at least one externally-visible IP address, as well as a local-only address
(127.0.0.1)

+» The goals of a server socket are different than a client socket
" Want to bind the socket to a particular port of one or more IP addresses of the server

" Want to allow multiple clients to connect to the same port

- OS uses client IP address and port numbers to direct I/O to the correct server file descriptor

WA/ UNIVERSITY of WASHINGTON

L22: Server-side Networking

CSE333, Autumn 2025

Step 1: Figure out IP address(es) & Port

Step 1: getaddrinfo () invocation may or may not be needed (but we’ll
use it)

®= Do you know your IP address(es) already?

- Static vs. dynamic IP address allocation

- Even if the machine has a static IP address, don’t wire it into the code — better to look it up
dynamically or use a configuration file

® Can request listen on all local IP addresses by passing NUL1, as hostname and setting
AT PASSIVEInhints.aili flags

- Effectis to use address 0.0.0.0 (IPv4) or :: (IPv6)

WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

Step 2: Create a Socket

- Step 2: socket () call is same as before
= Can directly use constants or fields from result of getaddrinfo ()

= Recall that this just returns a file descriptor — IP address and port are not associated with
socket yet

L22: Server-side Networking CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

Step 3: Bind the socket

% | int bind(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

" Looks nearly identical to connect () !

= Returns O on success, —1 on error

+» Some specifics for addr:
= Address family: AF TNET or AF TNET6

- What type of IP connections can we accept?
- POSIX systems can handle IPv4 clients via IPv6 so use AF INET6 ©

- AF UNSPEC doesn’t work as expected: it can bind to v4-only socket
= Port: portin network byte order (htons () is handy)

= Address: specify particular IP address or any IP address
- “Wildcard address” — INADDR ANY (IPv4), in6addr any (IPv6)

WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

Step 4: Listen for Incoming Clients

int listen(int sockfd, 1nt backloqg);

Tells the OS that the socket is a listening socket that clients can connect to

backlog: maximum length of connection queue
- Gets truncated, if necessary, to defined constant SOMAXCONN

- The OS will refuse new connections once queue is full until server accept ()s them (removing
them from the queue)

Returns O on success, —1 on error

Clients can start connecting to the socket as soon as 1isten () returns

- Server can’t use a connection until you accept () it

WA/ UNIVERSITY of WASHINGTON CSE333, Autumn 2025

0 PO" Evel‘yWhere pollev.com/naomila

We’re using a TCP socket to make a simple 1:1
chat program. What do we need to include in the
buffer we passtowrite ()?

A.

B. All of the above + TCP info (sequence number, port, ...)
C. All of the above + IP info (source & dest IP addresses...)
D. All of the above + Ethernet info (source & dest MAC addresses)

E. We're lost...

10

WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

Example Wallflower

+ See server bind listen.cc
" Takes in a port number from the command line

" Opens a server socket, prints info, then listens for connections for 20 seconds

- Can connect to it using netcat (nc)

11

WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

Step 5: Accept a Client Connection

% | int accept(int sockfd, struct sockaddr* addr,
socklen t* addrlen);

= Returns a new (different from sockfd), active, ready-to-use socket file descriptor
connected to a client (or —1 on error)

- sockfd must have been created, bound, and listening
- Pulls a queued connection or waits for an incoming one
" addr and addrlen are output parameters

- *addrlen should initially be setto sizeof (*addr), gets overwritten with the size of the
client address

- Address information of client is written into *addr
— Use inet ntop () to get the client’s printable IP address

— Use getnameinfo () to do areverse DNS lookup on the client

12

WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

Example Parrot €.

+ See server accept rw close.cc
= Gets a port number from the command line

" Opens a server socket, prints info, then listens for connections

- Can connect to it using netcat (nc)
= Accepts connections as they come

= Echoes any data the client sends to it on stdout and also sends it back to the client

13

WA/ UNIVERSITY of WASHINGTON

L22: Server-side Networking

Something to Note

« Unlike netcat, our server code is not concurrent

= Single thread of execution
" The thread blocks while waiting for the next connection

" The thread blocks waiting for the next message from the connection

+» A crowd of clients is, by nature, concurrent

= While our server is handling the next client, all other clients are stuck waiting for it ®

CSE333, Autumn 2025

14

WA/ UNIVERSITY of WASHINGTON

L22: Server-side Networking

hw4 demo

% Multithreaded Web Server (333gle)

" Don’t worry — multithreading has mostly been written for you
" ./http333d PORT STATIC DIR INDEX FILE+

= Some security bugs to fix, too

CSE333, Autumn 2025

15

WA/ UNIVERSITY of WASHINGTON L22: Server-side Networking CSE333, Autumn 2025

Extra Exercise #1

+~ Write a program that:
" Creates a listening socket that accepts connections from clients
= Reads a line of text from the client
= Parses the line of text as a DNS name
= Does a DNS lookup on the name
= Writes back to the client the list of IP addresses associated with the DNS name

= Closes the connection to the client

16

	Slide 1: Server-side Networking CSE 333 Autumn 2025
	Slide 2: Socket API: Server TCP Connection
	Slide 3: The idea with listener sockets
	Slide 4: Servers
	Slide 5: Step 1: Figure out IP address(es) & Port
	Slide 6: Step 2: Create a Socket
	Slide 7: Step 3: Bind the socket
	Slide 8: Step 4: Listen for Incoming Clients
	Slide 10: We’re using a TCP socket to make a simple 1:1 chat program. What do we need to include in the buffer we pass to write()?
	Slide 11: Example Wallflower 🌺
	Slide 12: Step 5: Accept a Client Connection
	Slide 13: Example Parrot 🦜
	Slide 14: Something to Note
	Slide 15: hw4 demo
	Slide 16: Extra Exercise #1

