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Socket API: Server TCP Connection

❖ Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen

2) Create a socket

3) bind() the socket to the address(es) and port

4) Tell the socket to listen() for incoming clients

5) accept() a client connection, which creates a new socket for it

6) .read() and write() to that new client socket

7) close() the client socket

8) Rinse and repeat
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The idea with listener sockets
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Servers

❖ Servers can have multiple IP addresses (“multihoming”)

▪ Usually have at least one externally-visible IP address, as well as a local-only address 

(127.0.0.1)

❖ The goals of a server socket are different than a client socket

▪ Want to bind the socket to a particular port of one or more IP addresses of the server

▪ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the  correct server file descriptor
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Step 1: Figure out IP address(es) & Port

❖ Step 1: getaddrinfo() invocation may or may not be needed (but we’ll 

use it)

▪ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation

• Even if the machine has a static IP address, don’t wire it into the code – better to look it up 

dynamically or use a configuration file

▪ Can request listen on all local IP addresses by passing NULL as hostname and setting 

AI_PASSIVE in hints.ai_flags

• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)
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Step 2: Create a Socket

❖ Step 2: socket() call is same as before

▪ Can directly use constants or fields from result of getaddrinfo()

▪ Recall that this just returns a file descriptor – IP address and port are not associated with 

socket yet
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Step 3: Bind the socket

❖  

▪ Looks nearly identical to connect()!

▪ Returns 0 on success, -1 on error

❖ Some specifics for addr:

▪ Address family:  AF_INET or AF_INET6

• What type of IP connections can we accept?

• POSIX systems can handle IPv4 clients via IPv6 so use AF_INET6  ☺

• AF_UNSPEC doesn’t work as expected: it can bind to v4-only socket 

▪ Port:  port in network byte order (htons() is handy)

▪ Address:  specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)
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int bind(int sockfd, const struct sockaddr* addr, 

         socklen_t addrlen);
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Step 4: Listen for Incoming Clients

❖  

▪ Tells the OS that the socket is a listening socket that clients can connect to

▪ backlog:  maximum length of connection queue

• Gets truncated, if necessary, to defined constant SOMAXCONN

• The OS will refuse new connections once queue is full until server accept()s  them (removing 

them from the queue)

▪ Returns 0 on success, -1 on error

▪ Clients can start connecting to the socket as soon as listen() returns

• Server can’t use a connection until you accept() it
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int listen(int sockfd, int backlog);
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pollev.com/naomila

We’re using a TCP socket to make a simple 1:1 
chat program. What do we need to include in the 
buffer we pass to write()?

A. The user’s chat message

B. All of the above + TCP info (sequence number, port, …)

C. All of the above + IP info (source & dest IP addresses…) 

D. All of the above + Ethernet info (source & dest MAC addresses)

E. We’re lost…
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Example Wallflower 

❖ See server_bind_listen.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections for 20 seconds

• Can connect to it using netcat (nc)
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Step 5: Accept a Client Connection

❖  

▪ Returns a new (different from sockfd), active, ready-to-use socket file descriptor 

connected to a client (or -1 on error)

• sockfd must have been created, bound, and listening

• Pulls a queued connection or waits for an incoming one

▪ addr and addrlen are output parameters

• *addrlen should initially be set to sizeof(*addr), gets overwritten with the size of the 

client address

• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address

– Use getnameinfo() to do a reverse DNS lookup on the client
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int accept(int sockfd, struct sockaddr* addr, 

           socklen_t* addrlen);
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Example Parrot 

❖ See server_accept_rw_close.cc

▪ Gets a port number from the command line

▪ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

▪ Accepts connections as they come

▪ Echoes any data the client sends to it on stdout and also sends it back to the client
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Something to Note

❖ Unlike netcat, our server code is not concurrent

▪ Single thread of execution

▪ The thread blocks while waiting for the next connection

▪ The thread blocks waiting for the next message from the connection

❖ A crowd of clients is, by nature, concurrent

▪ While our server is handling the next client, all other clients are stuck waiting for it 
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hw4 demo

❖ Multithreaded Web Server (333gle)

▪ Don’t worry – multithreading has mostly been written for you

▪ ./http333d PORT STATIC_DIR INDEX_FILE+

▪ Some security bugs to fix, too
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Extra Exercise #1

❖ Write a program that:

▪ Creates a listening socket that accepts connections from clients

▪ Reads a line of text from the client

▪ Parses the line of text as a DNS name

▪ Does a DNS lookup on the name

▪ Writes back to the client the list of IP addresses associated with the DNS name

▪ Closes the connection to the client
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