
CSE333, Autumn 2025L22: Server-side Networking

Server-side Networking
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L22: Server-side Networking

Socket API: Server TCP Connection

❖ Pretty similar to clients, but with additional steps:

1) Figure out the IP address and port on which to listen

2) Create a socket

3) bind() the socket to the address(es) and port

4) Tell the socket to listen() for incoming clients

5) accept() a client connection, which creates a new socket for it

6) .read() and write() to that new client socket

7) close() the client socket

8) Rinse and repeat

2

CSE333, Autumn 2025L22: Server-side Networking

The idea with listener sockets

3

https://www.yelp.com/biz_photos/tea-era-mountain-view-
2?select=_EH3rI_MLPFIlColyFFxaw

CSE333, Autumn 2025L22: Server-side Networking

Servers

❖ Servers can have multiple IP addresses (“multihoming”)

▪ Usually have at least one externally-visible IP address, as well as a local-only address

(127.0.0.1)

❖ The goals of a server socket are different than a client socket

▪ Want to bind the socket to a particular port of one or more IP addresses of the server

▪ Want to allow multiple clients to connect to the same port

• OS uses client IP address and port numbers to direct I/O to the correct server file descriptor

4

CSE333, Autumn 2025L22: Server-side Networking

Step 1: Figure out IP address(es) & Port

❖ Step 1: getaddrinfo() invocation may or may not be needed (but we’ll

use it)

▪ Do you know your IP address(es) already?

• Static vs. dynamic IP address allocation

• Even if the machine has a static IP address, don’t wire it into the code – better to look it up

dynamically or use a configuration file

▪ Can request listen on all local IP addresses by passing NULL as hostname and setting

AI_PASSIVE in hints.ai_flags

• Effect is to use address 0.0.0.0 (IPv4) or :: (IPv6)

5

CSE333, Autumn 2025L22: Server-side Networking

Step 2: Create a Socket

❖ Step 2: socket() call is same as before

▪ Can directly use constants or fields from result of getaddrinfo()

▪ Recall that this just returns a file descriptor – IP address and port are not associated with

socket yet

6

CSE333, Autumn 2025L22: Server-side Networking

Step 3: Bind the socket

❖

▪ Looks nearly identical to connect()!

▪ Returns 0 on success, -1 on error

❖ Some specifics for addr:

▪ Address family: AF_INET or AF_INET6

• What type of IP connections can we accept?

• POSIX systems can handle IPv4 clients via IPv6 so use AF_INET6 ☺

• AF_UNSPEC doesn’t work as expected: it can bind to v4-only socket

▪ Port: port in network byte order (htons() is handy)

▪ Address: specify particular IP address or any IP address

• “Wildcard address” – INADDR_ANY (IPv4), in6addr_any (IPv6)

7

int bind(int sockfd, const struct sockaddr* addr,

 socklen_t addrlen);

CSE333, Autumn 2025L22: Server-side Networking

Step 4: Listen for Incoming Clients

❖

▪ Tells the OS that the socket is a listening socket that clients can connect to

▪ backlog: maximum length of connection queue

• Gets truncated, if necessary, to defined constant SOMAXCONN

• The OS will refuse new connections once queue is full until server accept()s them (removing

them from the queue)

▪ Returns 0 on success, -1 on error

▪ Clients can start connecting to the socket as soon as listen() returns

• Server can’t use a connection until you accept() it

8

int listen(int sockfd, int backlog);

CSE333, Autumn 2025L22: Server-side Networking

10

pollev.com/naomila

We’re using a TCP socket to make a simple 1:1
chat program. What do we need to include in the
buffer we pass to write()?

A. The user’s chat message

B. All of the above + TCP info (sequence number, port, …)

C. All of the above + IP info (source & dest IP addresses…)

D. All of the above + Ethernet info (source & dest MAC addresses)

E. We’re lost…

CSE333, Autumn 2025L22: Server-side Networking

Example Wallflower

❖ See server_bind_listen.cc

▪ Takes in a port number from the command line

▪ Opens a server socket, prints info, then listens for connections for 20 seconds

• Can connect to it using netcat (nc)

11

CSE333, Autumn 2025L22: Server-side Networking

Step 5: Accept a Client Connection

❖

▪ Returns a new (different from sockfd), active, ready-to-use socket file descriptor

connected to a client (or -1 on error)

• sockfd must have been created, bound, and listening

• Pulls a queued connection or waits for an incoming one

▪ addr and addrlen are output parameters

• *addrlen should initially be set to sizeof(*addr), gets overwritten with the size of the

client address

• Address information of client is written into *addr

– Use inet_ntop() to get the client’s printable IP address

– Use getnameinfo() to do a reverse DNS lookup on the client

12

int accept(int sockfd, struct sockaddr* addr,

 socklen_t* addrlen);

CSE333, Autumn 2025L22: Server-side Networking

Example Parrot

❖ See server_accept_rw_close.cc

▪ Gets a port number from the command line

▪ Opens a server socket, prints info, then listens for connections

• Can connect to it using netcat (nc)

▪ Accepts connections as they come

▪ Echoes any data the client sends to it on stdout and also sends it back to the client

13

CSE333, Autumn 2025L22: Server-side Networking

Something to Note

❖ Unlike netcat, our server code is not concurrent

▪ Single thread of execution

▪ The thread blocks while waiting for the next connection

▪ The thread blocks waiting for the next message from the connection

❖ A crowd of clients is, by nature, concurrent

▪ While our server is handling the next client, all other clients are stuck waiting for it 

14

CSE333, Autumn 2025L22: Server-side Networking

hw4 demo

❖ Multithreaded Web Server (333gle)

▪ Don’t worry – multithreading has mostly been written for you

▪ ./http333d PORT STATIC_DIR INDEX_FILE+

▪ Some security bugs to fix, too

15

CSE333, Autumn 2025L22: Server-side Networking

Extra Exercise #1

❖ Write a program that:

▪ Creates a listening socket that accepts connections from clients

▪ Reads a line of text from the client

▪ Parses the line of text as a DNS name

▪ Does a DNS lookup on the name

▪ Writes back to the client the list of IP addresses associated with the DNS name

▪ Closes the connection to the client

16

	Slide 1: Server-side Networking CSE 333 Autumn 2025
	Slide 2: Socket API: Server TCP Connection
	Slide 3: The idea with listener sockets
	Slide 4: Servers
	Slide 5: Step 1: Figure out IP address(es) & Port
	Slide 6: Step 2: Create a Socket
	Slide 7: Step 3: Bind the socket
	Slide 8: Step 4: Listen for Incoming Clients
	Slide 10: We’re using a TCP socket to make a simple 1:1 chat program. What do we need to include in the buffer we pass to write()?
	Slide 11: Example Wallflower 🌺
	Slide 12: Step 5: Accept a Client Connection
	Slide 13: Example Parrot 🦜
	Slide 14: Something to Note
	Slide 15: hw4 demo
	Slide 16: Extra Exercise #1

