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Socket API: Server TCP Connection

- Pretty similar to clients, but with additional steps:
1) Figure out the IP address and port on which to listen
2) Create a socket
3) bind () the socket to the address(es) and port
4) Tell the socket to 1isten() for incoming clients
5) accept () aclient connection, which creates a new socket for it
6) read () andwrite () to that new client socket
7) close () the client socket

8) Rinse and repeat
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The idea with listener sockets

https://www.yelp.com/biz_photos/tea-era-mountain-view-
2?select=_EH3rl_MLPFIIColyFFxaw
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Servers

+» Servers can have multiple IP addresses (“multihoming”)

= Usually have at least one externally-visible IP address, as well as a local-only address
(127.0.0.1)

+» The goals of a server socket are different than a client socket
" Want to bind the socket to a particular port of one or more IP addresses of the server

" Want to allow multiple clients to connect to the same port

- OS uses client IP address and port numbers to direct I/O to the correct server file descriptor
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Step 1: Figure out IP address(es) & Port

Step 1: getaddrinfo () invocation may or may not be needed (but we’ll
use it)

®= Do you know your IP address(es) already?

- Static vs. dynamic IP address allocation

- Even if the machine has a static IP address, don’t wire it into the code — better to look it up
dynamically or use a configuration file

® Can request listen on all local IP addresses by passing NUL1, as hostname and setting
AT PASSIVEInhints.aili flags

- Effectis to use address 0.0.0.0 (IPv4) or :: (IPv6)
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Step 2: Create a Socket

- Step 2: socket () call is same as before
= Can directly use constants or fields from result of getaddrinfo ()

= Recall that this just returns a file descriptor — IP address and port are not associated with
socket yet
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Step 3: Bind the socket

% | int bind(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

" Looks nearly identical to connect () !

= Returns O on success, —1 on error

+» Some specifics for addr:
= Address family: AF TNET or AF TNET6

- What type of IP connections can we accept?
- POSIX systems can handle IPv4 clients via IPv6 so use AF INET6 ©

- AF UNSPEC doesn’t work as expected: it can bind to v4-only socket
= Port: portin network byte order (htons () is handy)

= Address: specify particular IP address or any IP address
- “Wildcard address” — INADDR ANY (IPv4), in6addr any (IPv6)
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Step 4: Listen for Incoming Clients

int listen(int sockfd, 1nt backloqg);

Tells the OS that the socket is a listening socket that clients can connect to

backlog: maximum length of connection queue
- Gets truncated, if necessary, to defined constant SOMAXCONN

- The OS will refuse new connections once queue is full until server accept ()s them (removing
them from the queue)

Returns O on success, —1 on error

Clients can start connecting to the socket as soon as 1isten () returns

- Server can’t use a connection until you accept () it
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0 PO" Evel‘yWhere pollev.com/naomila

We’re using a TCP socket to make a simple 1:1
chat program. What do we need to include in the
buffer we passtowrite ()?

A.

B. All of the above + TCP info (sequence number, port, ...)
C. All of the above + IP info (source & dest IP addresses...)
D. All of the above + Ethernet info (source & dest MAC addresses)

E. We're lost...

10
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Example Wallflower

+ See server bind listen.cc
" Takes in a port number from the command line

" Opens a server socket, prints info, then listens for connections for 20 seconds

- Can connect to it using netcat (nc)

11
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Step 5: Accept a Client Connection

% | int accept(int sockfd, struct sockaddr* addr,
socklen t* addrlen);

= Returns a new (different from sockfd), active, ready-to-use socket file descriptor
connected to a client (or —1 on error)

- sockfd must have been created, bound, and listening
- Pulls a queued connection or waits for an incoming one
" addr and addrlen are output parameters

- *addrlen should initially be setto sizeof (*addr), gets overwritten with the size of the
client address

- Address information of client is written into *addr
— Use inet ntop () to get the client’s printable IP address

— Use getnameinfo () to do areverse DNS lookup on the client

12
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Example Parrot €.

+ See server accept rw close.cc
= Gets a port number from the command line

" Opens a server socket, prints info, then listens for connections

- Can connect to it using netcat (nc)
= Accepts connections as they come

= Echoes any data the client sends to it on stdout and also sends it back to the client

13
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Something to Note

« Unlike netcat, our server code is not concurrent

= Single thread of execution
" The thread blocks while waiting for the next connection

" The thread blocks waiting for the next message from the connection

+» A crowd of clients is, by nature, concurrent

= While our server is handling the next client, all other clients are stuck waiting for it ®

CSE333, Autumn 2025
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hw4 demo

% Multithreaded Web Server (333gle)

" Don’t worry — multithreading has mostly been written for you
" ./http333d PORT STATIC DIR INDEX FILE+

= Some security bugs to fix, too

CSE333, Autumn 2025
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Extra Exercise #1

+~ Write a program that:
" Creates a listening socket that accepts connections from clients
= Reads a line of text from the client
= Parses the line of text as a DNS name
= Does a DNS lookup on the name
= Writes back to the client the list of IP addresses associated with the DNS name

= Closes the connection to the client

16
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