
CSE333, Autumn 2025L21: Client-side Networking

Client-side Networking
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L21: Client-side Networking

Administrivia

❖ The HW3 bell tolls for thee

▪ Sorry we didn’t have office hours yesterday

❖ Ex15 also out

▪ Stitch together the code chunks from Monday and Wednesday

2

CSE333, Autumn 2025L21: Client-side Networking

Socket API: Client TCP Connection

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

3

CSE333, Autumn 2025L21: Client-side Networking

Our networking multitool

❖ Netcat (“nc”)

▪ Does what “cat” does, but over the net

▪ Specifically:

• Opens a socket

• Writes bytes from stdin to the socket

• Prints bytes read from the socket to stdout

❖ Usage (TCP):

▪ Client: nc HOST PORT

▪ Server: nc –k -l PORT

▪ To exit either of them: Ctrl+C

4

CSE333, Autumn 2025L21: Client-side Networking

Step 1: DNS Lookup

❖ (from last time; details/examples in sections this week)

❖ See dnsresolve.cc

5

struct addrinfo {

 int ai_flags; // additional flags

 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

 size_t ai_addrlen; // length of socket addr in bytes

 struct sockaddr* ai_addr; // pointer to socket addr

 char* ai_canonname; // canonical name

 struct addrinfo* ai_next; // can form a linked list

};

CSE333, Autumn 2025L21: Client-side Networking

Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <iostream>

int main(int argc, char** argv) {

 int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

 if (socket_fd == -1) {

 std::cerr << strerror(errno) << std::endl;

 return EXIT_FAILURE;

 }

 close(socket_fd);

 return EXIT_SUCCESS;

}

6

socket.cc

CSE333, Autumn 2025L21: Client-side Networking

Step 3: Connect to the Server

❖ The connect() system call establishes a connection to a remote
host
▪

• sockfd: Socket file description from Step 2

• addr and addrlen: Usually from one of the address structures returned by
getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the remote host to
establish a TCP connection to it

• This involves ~2 round trips across the network

int connect(int sockfd, const struct sockaddr* addr,

 socklen_t addrlen);

7

CSE333, Autumn 2025L21: Client-side Networking

How long are two “round trips”

❖ Exact numbers change somewhat over time, but you should know

the order-of-magnitudes here

8

CSE333, Autumn 2025L21: Client-side Networking

Connect Example

❖ See connect.cc

// Get an appropriate sockaddr structure.

struct sockaddr_storage addr;

size_t addrlen;

LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.

int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);

if (socket_fd == -1) {

 cerr << "socket() failed: " << strerror(errno) << endl;

 return EXIT_FAILURE;

}

// Connect the socket to the remote host.

int res = connect(socket_fd,

 reinterpret_cast<sockaddr*>(&addr),

 addrlen);

if (res == -1) {

 cerr << "connect() failed: " << strerror(errno) << endl;

}

9

CSE333, Autumn 2025L21: Client-side Networking

Step 4: read()

❖ If there is data that has already been received by the network stack, then read

will return immediately with it

▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read() will block until

something arrives

▪ This might cause deadlock!

▪ Can read() return 0?

10

CSE333, Autumn 2025L21: Client-side Networking

Step 4: write()

❖ write() enqueues your data in a send buffer in the OS and then

returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet received the data!

❖ If there is no more space left in the send buffer, by default write()

will block

11

CSE333, Autumn 2025L21: Client-side Networking

Read/Write Example

❖ See sendreceive.cc

▪ Demo

12

while (1) {

 int wres = write(socket_fd, readbuf, res);

 if (wres == 0) {

 cerr << "socket closed prematurely" << endl;

 close(socket_fd);

 return EXIT_FAILURE;

 }

 if (wres == -1) {

 if (errno == EINTR)

 continue;

 cerr << "socket write failure: " << strerror(errno) << endl;

 close(socket_fd);

 return EXIT_FAILURE;

 }

 break;

}

CSE333, Autumn 2025L21: Client-side Networking

Step 5: close()

❖

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors associated with it on both

ends of the connection

int close(int fd);

13

CSE333, Autumn 2025L21: Client-side Networking

Extra Exercise #1

❖ Write a program that:

▪ Reads DNS names, one per line, from stdin

▪ Translates each name to one or more IP addresses

▪ Prints out each IP address to stdout, one per line

14

	Slide 1: Client-side Networking CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: Socket API: Client TCP Connection
	Slide 4: Our networking multitool
	Slide 5: Step 1: DNS Lookup
	Slide 6: Step 2: Creating a Socket
	Slide 7: Step 3: Connect to the Server
	Slide 8: How long are two “round trips”
	Slide 9: Connect Example
	Slide 10: Step 4: read()
	Slide 11: Step 4: write()
	Slide 12: Read/Write Example
	Slide 13: Step 5: close()
	Slide 14: Extra Exercise #1

