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Administrivia

» The HW3 bell tolls for thee *

= Sorry we didn’t have office hours yesterday &=

+~ Ex15 also out
= Stitch together the code chunks from Monday and Wednesday
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Socket API: Client TCP Connection

+» There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket
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Our networking multitool

+ Netcat (“nc”
= Does what “cat” does, but over the net
= Specifically:
- Opens a socket

- Writes bytes from stdin to the socket

- Prints bytes read from the socket to stdout

+ Usage (TCP):
" Client: nc HOST PORT

® Server:nc -k -1 PORT
"= To exit either of them: Ctr1+C
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Step 1: DNS Lookup

+» (from last time; details/examples in sections this week)

« See dnsresolve.cc

struct addrinfo {

int ali flags;
int ali family;
int al_ socktype;
int al protocol;

size t ai addrlen;
struct sockaddr* ai addr;
char* al canonname;
struct addrinfo* ai next;

// additional flags

// AF INET, AF INET6, AF UNSPEC
// SOCK STREAM, SOCK DGRAM, 0

// IPPROTO TCP, IPPROTO UDP, 0
// length of socket addr in bytes
// polinter to socket addr

// canonical name

// can form a linked 1list
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Step 2: Creating a Socket

L21: Client-side Networking

% | int socket(int domain, 1int type, int protocol);

" Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error

socket.cc

7

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv)
1f (socket fd == -1) {

return EXIT FAILURE;
}

close (socket fd);
return EXIT SUCCESS;

{

int socket fd = socket (AF INET,

std: :cerr << strerror (errno)

SOCK_STREAM,

<< std::endl;

0);

\
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Step 3: Connect to the Server

>

» The connect () system call establishes a connection to a remote
host

m [ int connect(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

- sockfd: Socket file description from Step 2

- addr and addrlen: Usually from one of the address structures returned by
getaddrinfo in Step 1 (DNS lookup)

« Returns O on success and -1 on error

+» connect () may take some time to return
" |tis a blocking call by default

= The network stack within the OS will communicate with the remote host to
establish a TCP connection to it

- This involves ~2 round trips across the network

CSE333, Autumn 2025



WA/ UNIVERSITY of WASHINGTON

How long are two “round trips”

\/
0’0

Exact numbers change somewhat over time, but you should know

the order-of-magnitudes here

L21: Client-side Networking

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

Numbers Everyone Should Know

0.5 ns
5 ns
7 D&
£ IS
100 ns
3,000 ns
20,000 ns
250,000 ns
500,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns
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Connect Example

« See connect.cc

[ // Get an appropriate sockaddr structure.
struct sockaddr storage addr;

size t addrlen;

LookupName (argv([l], port, &addr, &addrlen);

// Create the socket.
int socket fd = socket (addr.ss family, SOCK STREAM, O0);
1f (socket fd == -1) {
cerr << "socket () failled: " << strerror (errno) << endl;
return EXIT FAILURE;

}

// Connect the socket to the remote host.

int res = connect (socket fd,
reinterpret cast<sockaddr*>(&addr),
addrlen) ;
1f (res == -1) {
cerr << "connect () failed: " << strerror (errno) << endl;
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Step 4: read ()

- If there is data that has already been received by the network stack, then read
will return immediately with it

" read () might return with /ess data than you asked for

» |f there is no data waiting for you, by default read () will block until
something arrives
" This might cause deadlock!

" Can read () return0?

10
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Step 4: write ()

+ write () enqueues your data in a send buffer in the OS and then
returns

" The OS transmits the data over the network in the background

" Whenwrite () returns, the receiver probably has not yet received the data!

+ |f there is no more space left in the send buffer, by default write ()
will block

11
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Read/Write Example

[ while (1) ({
int wres = write(socket fd, readbuf,
1f (wres == 0) {
cerr << "socket closed prematurely"
close (socket fd);
return EXIT FAILURE;
}
1f (wres == -1) {
1f (errno == EINTR)
continue;

close (socket fd);
return EXIT FAILURE;

}

break;

}

\

res) ;

<< endl;

cerr << "socket write faililure: " << strerror (errno)

<< endl;

% See sendreceive.cc

" Demo
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Step 5: close ()

“ |1int close(int f£d);

= Nothing special here —it’s the same function as with file /O

= Shuts down the socket and frees resources and file descriptors associated with it on both
ends of the connection

13
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Extra Exercise #1

+~ Write a program that:
= Reads DNS names, one per line, from stdin
" Translates each name to one or more IP addresses

" Prints out each IP address to stdout, one per line

14
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