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Administrivia

❖ The HW3 bell tolls for thee 

▪ Sorry we didn’t have office hours yesterday 

❖ Ex15 also out

▪ Stitch together the code chunks from Monday and Wednesday
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Socket API: Client TCP Connection

❖ There are five steps:

1) Figure out the IP address and port to connect to

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket
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Our networking multitool 

❖ Netcat (“nc”)

▪ Does what “cat” does, but over the net

▪ Specifically:

• Opens a socket

• Writes bytes from stdin to the socket 

• Prints bytes read from the socket to stdout

❖ Usage (TCP):

▪ Client: nc HOST PORT

▪ Server: nc –k -l PORT

▪ To exit either of them: Ctrl+C
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Step 1: DNS Lookup

❖ (from last time; details/examples in sections this week)

❖ See dnsresolve.cc
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struct addrinfo {

  int     ai_flags;          // additional flags

  int     ai_family;         // AF_INET, AF_INET6, AF_UNSPEC

  int     ai_socktype;       // SOCK_STREAM, SOCK_DGRAM, 0

  int     ai_protocol;       // IPPROTO_TCP, IPPROTO_UDP, 0

  size_t  ai_addrlen;        // length of socket addr in bytes

  struct sockaddr* ai_addr;  // pointer to socket addr

  char*   ai_canonname;      // canonical name

  struct addrinfo* ai_next;  // can form a linked list

};
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Step 2: Creating a Socket

❖ Use the socket() system call

▪ Creating a socket doesn’t bind it to a local address or port yet

▪ Returns file descriptor or -1 on error

int socket(int domain, int type, int protocol);

#include <arpa/inet.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <iostream>

int main(int argc, char** argv) {

  int socket_fd = socket(AF_INET, SOCK_STREAM, 0);

  if (socket_fd == -1) {

     std::cerr << strerror(errno) << std::endl;

     return EXIT_FAILURE;

  }

  close(socket_fd);

  return EXIT_SUCCESS;

}
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socket.cc
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Step 3: Connect to the Server

❖ The connect() system call establishes a connection to a remote 
host
▪  

• sockfd:  Socket file description from Step 2

• addr and addrlen:  Usually from one of the address structures returned by 
getaddrinfo in Step 1 (DNS lookup)

• Returns 0 on success and -1 on error

❖ connect() may take some time to return

▪ It is a blocking call by default

▪ The network stack within the OS will communicate with the remote host to 
establish a TCP connection to it

• This involves ~2 round trips across the network

int connect(int sockfd, const struct sockaddr* addr, 

            socklen_t addrlen);
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How long are two “round trips”

❖ Exact numbers change somewhat over time, but you should know 

the order-of-magnitudes here
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Connect Example

❖ See connect.cc

// Get an appropriate sockaddr structure.

struct sockaddr_storage addr;

size_t addrlen;

LookupName(argv[1], port, &addr, &addrlen);

// Create the socket.

int socket_fd = socket(addr.ss_family, SOCK_STREAM, 0);

if (socket_fd == -1) {

  cerr << "socket() failed: " << strerror(errno) << endl;

  return EXIT_FAILURE;

}

// Connect the socket to the remote host.

int res = connect(socket_fd,

                  reinterpret_cast<sockaddr*>(&addr),

                  addrlen);

if (res == -1) {

  cerr << "connect() failed: " << strerror(errno) << endl;

}
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Step 4: read()

❖ If there is data that has already been received by the network stack, then read 

will return immediately with it

▪ read() might return with less data than you asked for

❖ If there is no data waiting for you, by default read() will block until 

something arrives

▪ This might cause deadlock!

▪ Can read() return 0?
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Step 4: write()

❖ write() enqueues your data in a send buffer in the OS and then 

returns

▪ The OS transmits the data over the network in the background

▪ When write() returns, the receiver probably has not yet received the data!

❖ If there is no more space left in the send buffer, by default write() 

will block
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Read/Write Example

❖ See sendreceive.cc

▪ Demo
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while (1) {

  int wres = write(socket_fd, readbuf, res);

  if (wres == 0) {

    cerr << "socket closed prematurely" << endl;

    close(socket_fd);

    return EXIT_FAILURE;

  }

  if (wres == -1) {

    if (errno == EINTR)

      continue;

    cerr << "socket write failure: " << strerror(errno) << endl;

    close(socket_fd);

    return EXIT_FAILURE;

  }

  break;

}
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Step 5: close()

❖   

▪ Nothing special here – it’s the same function as with file I/O

▪ Shuts down the socket and frees resources and file descriptors associated with it on both 

ends of the connection

int close(int fd);
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Extra Exercise #1

❖ Write a program that:

▪ Reads DNS names, one per line, from stdin

▪ Translates each name to one or more IP addresses

▪ Prints out each IP address to stdout, one per line
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