WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking CSE333, Autumn 2025

Client-side Networking
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking CSE333, Autumn 2025

Administrivia

» The HW3 bell tolls for thee *

= Sorry we didn’t have office hours yesterday &=

+~ Ex15 also out
= Stitch together the code chunks from Monday and Wednesday

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking

Socket API: Client TCP Connection

+» There are five steps:
1) Figure out the IP address and port to connect to
2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking

CSE333, Autumn 2025

Our networking multitool

+ Netcat (“nc”
= Does what “cat” does, but over the net
= Specifically:
- Opens a socket

- Writes bytes from stdin to the socket

- Prints bytes read from the socket to stdout

+ Usage (TCP):
" Client: nc HOST PORT

® Server:nc -k -1 PORT
"= To exit either of them: Ctr1+C

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking

Step 1: DNS Lookup

+» (from last time; details/examples in sections this week)

« See dnsresolve.cc

struct addrinfo {

int ali flags;
int ali family;
int al_ socktype;
int al protocol;

size t ai addrlen;
struct sockaddr* ai addr;
char* al canonname;
struct addrinfo* ai next;

// additional flags

// AF INET, AF INET6, AF UNSPEC
// SOCK STREAM, SOCK DGRAM, 0

// IPPROTO TCP, IPPROTO UDP, 0
// length of socket addr in bytes
// polinter to socket addr

// canonical name

// can form a linked 1list

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

Step 2: Creating a Socket

L21: Client-side Networking

% | int socket(int domain, 1int type, int protocol);

" Creating a socket doesn’t bind it to a local address or port yet

= Returns file descriptor or -1 on error

socket.cc

7

#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <iostream>

int main(int argc, char** argv)
1f (socket fd == -1) {

return EXIT FAILURE;
}

close (socket fd);
return EXIT SUCCESS;

{

int socket fd = socket (AF INET,

std: :cerr << strerror (errno)

SOCK_STREAM,

<< std::endl;

0);

\

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking

Step 3: Connect to the Server

>

» The connect () system call establishes a connection to a remote
host

m [int connect(int sockfd, const struct sockaddr* addr,
socklen t addrlen);

- sockfd: Socket file description from Step 2

- addr and addrlen: Usually from one of the address structures returned by
getaddrinfo in Step 1 (DNS lookup)

« Returns O on success and -1 on error

+» connect () may take some time to return
" |tis a blocking call by default

= The network stack within the OS will communicate with the remote host to
establish a TCP connection to it

- This involves ~2 round trips across the network

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

How long are two “round trips”

\/
0’0

Exact numbers change somewhat over time, but you should know

the order-of-magnitudes here

L21: Client-side Networking

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Compress 1K bytes with Zippy

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

Numbers Everyone Should Know

0.5 ns
5 ns
7 D&
£ IS
100 ns
3,000 ns
20,000 ns
250,000 ns
500,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking CSE333, Autumn 2025

Connect Example

« See connect.cc

[// Get an appropriate sockaddr structure.
struct sockaddr storage addr;

size t addrlen;

LookupName (argv([l], port, &addr, &addrlen);

// Create the socket.
int socket fd = socket (addr.ss family, SOCK STREAM, O0);
1f (socket fd == -1) {
cerr << "socket () failled: " << strerror (errno) << endl;
return EXIT FAILURE;

}

// Connect the socket to the remote host.

int res = connect (socket fd,
reinterpret cast<sockaddr*>(&addr),
addrlen) ;
1f (res == -1) {
cerr << "connect () failed: " << strerror (errno) << endl;

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking CSE333, Autumn 2025

Step 4: read ()

- If there is data that has already been received by the network stack, then read
will return immediately with it

" read () might return with /ess data than you asked for

» |f there is no data waiting for you, by default read () will block until
something arrives
" This might cause deadlock!

" Can read () return0?

10

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking CSE333, Autumn 2025

Step 4: write ()

+ write () enqueues your data in a send buffer in the OS and then
returns

" The OS transmits the data over the network in the background

" Whenwrite () returns, the receiver probably has not yet received the data!

+ |f there is no more space left in the send buffer, by default write ()
will block

11

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking

Read/Write Example

[while (1) ({
int wres = write(socket fd, readbuf,
1f (wres == 0) {
cerr << "socket closed prematurely"
close (socket fd);
return EXIT FAILURE;
}
1f (wres == -1) {
1f (errno == EINTR)
continue;

close (socket fd);
return EXIT FAILURE;

}

break;

}

\

res) ;

<< endl;

cerr << "socket write faililure: " << strerror (errno)

<< endl;

% See sendreceive.cc

" Demo

CSE333, Autumn 2025

12

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking CSE333, Autumn 2025

Step 5: close ()

“ |1int close(int f£d);

= Nothing special here —it’s the same function as with file /O

= Shuts down the socket and frees resources and file descriptors associated with it on both
ends of the connection

13

WA/ UNIVERSITY of WASHINGTON L21: Client-side Networking CSE333, Autumn 2025

Extra Exercise #1

+~ Write a program that:
= Reads DNS names, one per line, from stdin
" Translates each name to one or more IP addresses

" Prints out each IP address to stdout, one per line

14

	Slide 1: Client-side Networking CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: Socket API: Client TCP Connection
	Slide 4: Our networking multitool
	Slide 5: Step 1: DNS Lookup
	Slide 6: Step 2: Creating a Socket
	Slide 7: Step 3: Connect to the Server
	Slide 8: How long are two “round trips”
	Slide 9: Connect Example
	Slide 10: Step 4: read()
	Slide 11: Step 4: write()
	Slide 12: Read/Write Example
	Slide 13: Step 5: close()
	Slide 14: Extra Exercise #1

