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Administrivia

+» HW3 due on Thursday
+» Ex15 out today, due Friday

= Uses material we’ll learn throughout the week — start now and do in little chunks
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Lecture Outline

<+ Network Programming
= Sockets API

= Network Addresses
= DNS Lookup
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Files and File Descriptors

+» Remember open (), read (), write (),and close()?
= POSIX system calls for interacting with files
= open () returns a file descriptor
- An integer that represents an open file

- This file descriptor is then passed to read (), write (), and close ()

" |nside the OS, the file descriptor is used to index into a table that keeps track of any OS-
level state associated with the file, such as the file position
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Networks and Sockets

+» UNIX likes to make all I/0O look like file I/O

" Youuse read () andwrite () to communicate with remote computers over the
network!

= A file descriptor used for network communications is called a socket
= Just like with files:

- Your program can have multiple network channels open at once

« You need to pass a file descriptor to read () and write () to let the OS know which network
channel to use
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File Descriptor Table

OS’s File Descriptor Table for the Process

128.95.4.33 File Type Connection

Descriptor

Web Server
0 pipe stdin (console)
1 pipe stdout (console)
2 pipe stderr (console)
3 TCP local: 128.95.4.33:80

I= socket | remote: 44.1.19.32:7113
E 5 file index.html
é 8 file pic.png

9 TCP local: 128.95.4.33:80

socket | remote: 102.12.3.4:5544

client § client
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Types of Sockets

« Stream sockets

" For connection-oriented, point-to-point, reliable byte streams
« Using TCP, STCP, or other stream transports

+» Datagram sockets

" For connection-less, one-to-many, unreliable packets
- Using UDP or other packet transports

+ Raw sockets

® For layer-3 communication (raw IP packet manipulation)



CSE333, Autumn 2025

w UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames

Stream Sockets

+~ Typically used for client-server communications
= Client: An application that establishes a connection to a server
= Server: An application that receives connections from clients

® Can also be used for other forms of communication like peer-

to-peer
1) Establish connection:
: : -, —
3) Close connection:

-

B alamy stock photo
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Datagram Sockets

+» Often used as a building block

= No flow control, ordering, or reliability, so used
less frequently

= e.g. streaming media applications or DNS lookups

1) Create sockets: -

= vy
|

2) Communicate:

4
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The Sockets API

+ Berkeley sockets originated in 4.2BSD Unix (1983)

" |tis the standard API for network programming

- Available on most OSs
" Writtenin C

+» POSIX Socket API
= A slight update of the Berkeley sockets API

- A few functions were deprecated or replaced

- Better support for multi-threading was added

10
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Why is this all this way?

<~ DARPA wanted Unix systems to be able to
connect to their internet
= Hired a contractor to write the C code
®" Hired a UC Berkeley student, Bill Joy, to “make the API”

= Bill didn’t know much about networking at the time, but
he figured it out (and then wrote all the C code himself
anyway)

+ After this experience, Bill rage quit academia and

https://computeradsfromthepast.substack.com/p/unix

-review-interviews-sun-co-founder fOU ndEd SU N M ICFOSVStemS

= Read the full story: https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-
and-tcp-ip/

11


https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

(as an aside, thank your historians)

+ In this case, Kirk McKusick and our very own Hal Perkins :3

12
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Our mission this week: send bytes over TCP using sockets

+~ We'll start by looking at the APl from the point of view of a client
connecting to a server over TCP

+» There are five steps:
1) Figure out the IP address and port to which to connect
2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

13
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Step 1: Figure Out IP Address and Port

+ Several parts:
= Network addresses
= Data structures for address info

®= DNS - Doman Name System — finding IP addresses

14
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IPv4 Network Addresses

+» An IPv4 address is a 4-byte tuple

® For humans, written in “dotted-decimal notation”
" e.9.128.95.4.1 (80:5£:04:01 in hex)

+ Each of those bytes has information about “which part” of the network the
machine is on

= Read left to right, the machine’s location gets more “network local”

" |Ps with the same prefix are on the same “subnet,” which represents some abstract form
of locality

15



W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

IPv6 Network Addresses

+» An IPv6 address is a 16-byte tuple
= Typically written in “hextets” (groups of 4 hex digits)

- Can omit leading zeros in hextets
- Double-colon replaces consecutive sections of zeros

" e.g. 2d01:0db8:£188:0000:0000:0000:0000:1£33
- Shorthand: 2d01:db8:f188::1£33

" Transition is still ongoing

« |Pv4-mapped IPv6 addresses
— 128.95.4.1 mappedto : : ££££:128.95.4.10r : : ££££:805£:401

- This unfortunately makes network programming more of a headache ®

16
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Linux Socket Addresses

o

Structures, constants, and helper functions available in:
#include <arpa/inet.h>

D)

%

Addresses stored in network byte order (big endian)

K/
0’0

Converting between host and network byte orders:
" uint32 t htonl (uint32 t hostlong);
" uint32 t ntohl (uint32 t netlong);

« ‘I’ for host byte order and ‘n’ for network byte order
« Also versions with ‘s’ for short (uint16 t)

>

How to handle both IPv4 and IPv6?
= Use C structs for each, but make them somewhat similar

= Use defined constants to differentiate when to use each: AF' INET for IPv4 and AF INET6 for
IPv6

« (Crude way to fake inheritance-like behavior in languages without it)

%

17
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IPv4 Address Structures

struct 1n addr {
uint32 t s addr;
bi

struct sockaddr in {

b o

// IPv4d 4-byte address

sa family t sin family;
in port t sin port;
struct in addr sin_ addr;
unsigned char sin zero[8]

// Address in network byte order

// An IPv4-specific address structure

// Address family: AF INET

// Port in network byte order
// IPv4 address

// Pad out to 16 bytes

struct sockaddr in:

family| port

addr

Zzero

0 2 4

8 16

CSE333, Autumn 2025
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IPv6 Address Structures

L20: Sockets, addresses and hostnames

// IPv6é 16-byte address
struct 1in6_addr {

uint8 t s6 _addr[l16]; // Address in network byte order

¥

// An IPvé6-specific address structure

struct sockaddr in6 {

sa family t sin6 family;
in port t sin6b_ port;
uint32 t sin6o flowinfo;
struct in6 addr sin6 addr;
uint32 t sin6 scope 1d;

b g

// Address family: AF INET6
// Port number

// IPvé flow information

// IPv6 address

// Scope ID

struct sockaddr inéo:

addr

famport] flow

scope

0

2 4 8

24 28

CSE333, Autumn 2025
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Generic Address Structures

'

\

// A mostly-protocol-independent address structure.
// Pointer to this 1s parameter type for socket system calls.
struct sockaddr {
sa family t sa family; // Address family (AF * constants)
char sa datal[l4]; // Socket address (size varies
// according to socket domain)

b g

// A structure big enough to hold either IPv4 or IPvé structs
struct sockaddr storage {
sa family t ss family; // Address family

// padding and alignment; don’t worry about the details
char  ss padl[ SS PADISIZE];
into4 t  ss align;
char  ss pad2[ SS PAD2Z2SIZE];
i

J

" Commonly create struct sockaddr storage, then pass pointer cast as struct
sockaddr* to connect ()

20
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Address Conversion

X2 (int inet pton(int af, const char* src, void* dst);}

= Converts human-readable string representation (“presentation”)

to network byte ordered address

= Returns 1 (success), 0 (bad src), or -1 (error)

[ #include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in sa; // IPv4
struct sockaddr in6 sa6; // IPvé6

// IPv6 string to sockaddr iné.
inet pton(AF INET6, "2001:db8:63b3:1::3490",

return EXIT SUCCESS;

genaddr.cc

// IPv4 string to sockaddr in (192.0.2.1 = C0:00:02:01).
inet pton (AF INET, "192.0.2.1", &(sa.sin_addr));

& (sa6.sin6 _addr));

CSE333, Autumn 2025
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Address Conversion

+ | const char* inet ntop(int af, const

vold* src,

char* dst, socklen t size);

= Converts network addr in src into buffer dst of size size

(#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in6 sab; // IPv6
char astring[INET6 ADDRSTRLEN]; // IPvé

// IPv6 string to sockaddr iné.
inet pton (AF INET6, "2001:0db8:63b3:1::3490",

// sockaddr in6é to IPvé6é string.
inet ntop (AF INET6, &(sa6.sin6_addr), astring,
std::cout << astring << std::endl;

return EXIT SUCCESS;

\

genstring.cc

& (sab.sinb addr));

INET6 ADDRSTRLEN) ;

CSE333, Autumn 2025
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Domain Name System

+~ People tend to use DNS names, not IP addresses

" The Sockets API lets you convert between the two
" |t's a complicated process, though:
- A given DNS name can have many IP addresses

- Many different IP addresses can map to the same DNS name

— An IP address will reverse map into at most one DNS name

- A DNS lookup may require interacting with many DNS servers

+ You can use the Linux program “dig” to explore DNS
" dig @server name type (+short)
- server: specific name server to query

- type: A(IPv4), AAAA (IPv6), ANY (includes all types)

CSE333, Autumn 2025
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DNS Hierarchy
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Resolving DNS Names

+» The POSIX way is to use getaddrinfo ()

= A complicated system call found in #include <netdb.h>

" Basicidea: [ int getaddrinfo (const char* hostname,

const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

Tellgetaddrinfo () which host and port you want resolved

— String representation for host: DNS name or IP address
Set up a “hints” structure with constraints you want respected

getaddrinfo () gives you a list of results packed into an “addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

Free the struct addrinfo list later using freeaddrinfo ()

CSE333, Autumn 2025
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getaddrinfo

«» getaddrinfo () arguments:
" hostname —domain name or IP address string

" service—port#(e.g. "80") or service name (e.g. "www"

or NULL/nullptr
[ struct addrinfo {

int ali flags; // additional flags
int ai family; // AF INET, AF INET6, AF UNSPEC
int ai socktype; // SOCK STREAM, SOCK DGRAM, 0
int al protocol; // IPPROTO TCP, IPPROTO UDP, 0
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked 1list

¥

® See dnsresolve.cc

27
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