W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

Sockets, addresses and hostnames
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz
Rishabh Jain Chendur Jel Jayavelu Lucas Kwan
Irene Xin Jie Lau Nathan Li Maya Odenheim
Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

Administrivia

+» HW3 due on Thursday
+» Ex15 out today, due Friday

= Uses material we’ll learn throughout the week — start now and do in little chunks

WA/ UNIVERSITY of WASHINGTON

Lecture Outline

<+ Network Programming
= Sockets API

= Network Addresses
= DNS Lookup

L20: Sockets, addresses and hostnames

CSE333, Autumn 2025

WA/ UNIVERSITY of WASHINGTON

L20: Sockets, addresses and hostnames

CSE333, Autumn 2025

Files and File Descriptors

+» Remember open (), read (), write (),and close()?
= POSIX system calls for interacting with files
= open () returns a file descriptor
- An integer that represents an open file

- This file descriptor is then passed to read (), write (), and close ()

" |nside the OS, the file descriptor is used to index into a table that keeps track of any OS-
level state associated with the file, such as the file position

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames

CSE333, Autumn 2025

Networks and Sockets

+» UNIX likes to make all I/0O look like file I/O

" Youuse read () andwrite () to communicate with remote computers over the
network!

= A file descriptor used for network communications is called a socket
= Just like with files:

- Your program can have multiple network channels open at once

« You need to pass a file descriptor to read () and write () to let the OS know which network
channel to use

w UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

File Descriptor Table

OS’s File Descriptor Table for the Process

128.95.4.33 File Type Connection

Descriptor

Web Server
0 pipe stdin (console)
1 pipe stdout (console)
2 pipe stderr (console)
3 TCP local: 128.95.4.33:80

I= socket | remote: 44.1.19.32:7113
E 5 file index.html
é 8 file pic.png

9 TCP local: 128.95.4.33:80

socket | remote: 102.12.3.4:5544

client § client

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

Types of Sockets

« Stream sockets

" For connection-oriented, point-to-point, reliable byte streams
« Using TCP, STCP, or other stream transports

+» Datagram sockets

" For connection-less, one-to-many, unreliable packets
- Using UDP or other packet transports

+ Raw sockets

® For layer-3 communication (raw IP packet manipulation)

CSE333, Autumn 2025

w UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames

Stream Sockets

+~ Typically used for client-server communications
= Client: An application that establishes a connection to a server
= Server: An application that receives connections from clients

® Can also be used for other forms of communication like peer-

to-peer
1) Establish connection:
: : -, —
3) Close connection:

-

B alamy stock photo

w UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

Datagram Sockets

+» Often used as a building block

= No flow control, ordering, or reliability, so used
less frequently

= e.g. streaming media applications or DNS lookups

1) Create sockets: -

= vy
|

2) Communicate:

4

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

The Sockets API

+ Berkeley sockets originated in 4.2BSD Unix (1983)

" |tis the standard API for network programming

- Available on most OSs
" Writtenin C

+» POSIX Socket API
= A slight update of the Berkeley sockets API

- A few functions were deprecated or replaced

- Better support for multi-threading was added

10

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

Why is this all this way?

<~ DARPA wanted Unix systems to be able to
connect to their internet
= Hired a contractor to write the C code
®" Hired a UC Berkeley student, Bill Joy, to “make the API”

= Bill didn’t know much about networking at the time, but
he figured it out (and then wrote all the C code himself
anyway)

+ After this experience, Bill rage quit academia and

https://computeradsfromthepast.substack.com/p/unix

-review-interviews-sun-co-founder fOU ndEd SU N M ICFOSVStemS

= Read the full story: https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-
and-tcp-ip/

11

https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

(as an aside, thank your historians)

+ In this case, Kirk McKusick and our very own Hal Perkins :3

12

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

Our mission this week: send bytes over TCP using sockets

+~ We'll start by looking at the APl from the point of view of a client
connecting to a server over TCP

+» There are five steps:
1) Figure out the IP address and port to which to connect
2) Create a socket
3) Connect the socket to the remote server
4) read () andwrite () data using the socket

5) Close the socket

13

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

Step 1: Figure Out IP Address and Port

+ Several parts:
= Network addresses
= Data structures for address info

®= DNS - Doman Name System — finding IP addresses

14

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

IPv4 Network Addresses

+» An IPv4 address is a 4-byte tuple

® For humans, written in “dotted-decimal notation”
" e.9.128.95.4.1 (80:5£:04:01 in hex)

+ Each of those bytes has information about “which part” of the network the
machine is on

= Read left to right, the machine’s location gets more “network local”

" |Ps with the same prefix are on the same “subnet,” which represents some abstract form
of locality

15

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

IPv6 Network Addresses

+» An IPv6 address is a 16-byte tuple
= Typically written in “hextets” (groups of 4 hex digits)

- Can omit leading zeros in hextets
- Double-colon replaces consecutive sections of zeros

" e.g. 2d01:0db8:£188:0000:0000:0000:0000:1£33
- Shorthand: 2d01:db8:f188::1£33

" Transition is still ongoing

« |Pv4-mapped IPv6 addresses
— 128.95.4.1 mappedto : : ££££:128.95.4.10r : : ££££:805£:401

- This unfortunately makes network programming more of a headache ®

16

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

Linux Socket Addresses

o

Structures, constants, and helper functions available in:
#include <arpa/inet.h>

D)

%

Addresses stored in network byte order (big endian)

K/
0’0

Converting between host and network byte orders:
" uint32 t htonl (uint32 t hostlong);
" uint32 t ntohl (uint32 t netlong);

« ‘I’ for host byte order and ‘n’ for network byte order
« Also versions with ‘s’ for short (uint16 t)

>

How to handle both IPv4 and IPv6?
= Use C structs for each, but make them somewhat similar

= Use defined constants to differentiate when to use each: AF' INET for IPv4 and AF INET6 for
IPv6

« (Crude way to fake inheritance-like behavior in languages without it)

%

17

WA/ UNIVERSITY of WASHINGTON

L20: Sockets, addresses and hostnames

IPv4 Address Structures

struct 1n addr {
uint32 t s addr;
bi

struct sockaddr in {

b o

// IPv4d 4-byte address

sa family t sin family;
in port t sin port;
struct in addr sin_ addr;
unsigned char sin zero[8]

// Address in network byte order

// An IPv4-specific address structure

// Address family: AF INET

// Port in network byte order
// IPv4 address

// Pad out to 16 bytes

struct sockaddr in:

family| port

addr

Zzero

0 2 4

8 16

CSE333, Autumn 2025

18

WA/ UNIVERSITY of WASHINGTON

IPv6 Address Structures

L20: Sockets, addresses and hostnames

// IPv6é 16-byte address
struct 1in6_addr {

uint8 t s6 _addr[l16]; // Address in network byte order

¥

// An IPvé6-specific address structure

struct sockaddr in6 {

sa family t sin6 family;
in port t sin6b_ port;
uint32 t sin6o flowinfo;
struct in6 addr sin6 addr;
uint32 t sin6 scope 1d;

b g

// Address family: AF INET6
// Port number

// IPvé flow information

// IPv6 address

// Scope ID

struct sockaddr inéo:

addr

famport] flow

scope

0

2 4 8

24 28

CSE333, Autumn 2025

19

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames

CSE333, Autumn 2025

Generic Address Structures

'

\

// A mostly-protocol-independent address structure.
// Pointer to this 1s parameter type for socket system calls.
struct sockaddr {
sa family t sa family; // Address family (AF * constants)
char sa datal[l4]; // Socket address (size varies
// according to socket domain)

b g

// A structure big enough to hold either IPv4 or IPvé structs
struct sockaddr storage {
sa family t ss family; // Address family

// padding and alignment; don’t worry about the details
char ss padl[SS PADISIZE];
into4 t ss align;
char ss pad2[SS PAD2Z2SIZE];
i

J

" Commonly create struct sockaddr storage, then pass pointer cast as struct
sockaddr* to connect ()

20

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames

Address Conversion

X2 (int inet pton(int af, const char* src, void* dst);}

= Converts human-readable string representation (“presentation”)

to network byte ordered address

= Returns 1 (success), 0 (bad src), or -1 (error)

[#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in sa; // IPv4
struct sockaddr in6 sa6; // IPvé6

// IPv6 string to sockaddr iné.
inet pton(AF INET6, "2001:db8:63b3:1::3490",

return EXIT SUCCESS;

genaddr.cc

// IPv4 string to sockaddr in (192.0.2.1 = C0:00:02:01).
inet pton (AF INET, "192.0.2.1", &(sa.sin_addr));

& (sa6.sin6 _addr));

CSE333, Autumn 2025

21

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames

Address Conversion

+ | const char* inet ntop(int af, const

vold* src,

char* dst, socklen t size);

= Converts network addr in src into buffer dst of size size

(#include <stdlib.h>
#include <arpa/inet.h>

int main(int argc, char **argv) {
struct sockaddr in6 sab; // IPv6
char astring[INET6 ADDRSTRLEN]; // IPvé

// IPv6 string to sockaddr iné.
inet pton (AF INET6, "2001:0db8:63b3:1::3490",

// sockaddr in6é to IPvé6é string.
inet ntop (AF INET6, &(sa6.sin6_addr), astring,
std::cout << astring << std::endl;

return EXIT SUCCESS;

\

genstring.cc

& (sab.sinb addr));

INET6 ADDRSTRLEN) ;

CSE333, Autumn 2025

22

WA/ UNIVERSITY of WASHINGTON

L20: Sockets, addresses and hostnames

Domain Name System

+~ People tend to use DNS names, not IP addresses

" The Sockets API lets you convert between the two
" |t's a complicated process, though:
- A given DNS name can have many IP addresses

- Many different IP addresses can map to the same DNS name

— An IP address will reverse map into at most one DNS name

- A DNS lookup may require interacting with many DNS servers

+ You can use the Linux program “dig” to explore DNS
" dig @server name type (+short)
- server: specific name server to query

- type: A(IPv4), AAAA (IPv6), ANY (includes all types)

CSE333, Autumn 2025

24

WA/ UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

DNS Hierarchy

Root
Name Servers

-~ 7 ~

4”7 . L/ “4 h N
Top-level
com cn coo org .
Domain Servers
/ ~ /7 \ V4 \ / ~

/ \ Se / \ Se
/ \ - ~ / \ - ~
4 <« Sa 4 <« Sa
facebook google U netflix apache wikipedia JEEEX
‘/ I N 7 [/ \ \\ ‘/ I N ‘/ I N / \ ‘/ I N
\ 4 ‘// / \ N 7 - v 4 / \ v 'y
’ / \ S / \

/ / \ N / \
P4 v « Na v \
docs mail news coe news coe

25

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames

Resolving DNS Names

+» The POSIX way is to use getaddrinfo ()

= A complicated system call found in #include <netdb.h>

" Basicidea: [int getaddrinfo (const char* hostname,

const char* service,
const struct addrinfo* hints,
struct addrinfo** res);

Tellgetaddrinfo () which host and port you want resolved

— String representation for host: DNS name or IP address
Set up a “hints” structure with constraints you want respected

getaddrinfo () gives you a list of results packed into an “addrinfo” structure/linked list

— Returns 0 on success; returns negative number on failure

Free the struct addrinfo list later using freeaddrinfo ()

CSE333, Autumn 2025

26

W UNIVERSITY of WASHINGTON L20: Sockets, addresses and hostnames CSE333, Autumn 2025

getaddrinfo

«» getaddrinfo () arguments:
" hostname —domain name or IP address string

" service—port#(e.g. "80") or service name (e.g. "www"

or NULL/nullptr
[struct addrinfo {

int ali flags; // additional flags
int ai family; // AF INET, AF INET6, AF UNSPEC
int ai socktype; // SOCK STREAM, SOCK DGRAM, 0
int al protocol; // IPPROTO TCP, IPPROTO UDP, 0
size t ai addrlen; // length of socket addr in bytes
struct sockaddr* ai addr; // pointer to socket addr
char* al canonname; // canonical name
struct addrinfo* ai next; // can form a linked 1list

¥

® See dnsresolve.cc

27

	Slide 1: Sockets, addresses and hostnames CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Files and File Descriptors
	Slide 5: Networks and Sockets
	Slide 6: File Descriptor Table
	Slide 7: Types of Sockets
	Slide 8: Stream Sockets
	Slide 9: Datagram Sockets
	Slide 10: The Sockets API
	Slide 11: Why is this all this way?
	Slide 12: (as an aside, thank your historians)
	Slide 13: Our mission this week: send bytes over TCP using sockets
	Slide 14: Step 1: Figure Out IP Address and Port
	Slide 15: IPv4 Network Addresses
	Slide 16: IPv6 Network Addresses
	Slide 17: Linux Socket Addresses
	Slide 18: IPv4 Address Structures
	Slide 19: IPv6 Address Structures
	Slide 20: Generic Address Structures
	Slide 21: Address Conversion
	Slide 22: Address Conversion
	Slide 24: Domain Name System
	Slide 25: DNS Hierarchy
	Slide 26: Resolving DNS Names
	Slide 27: getaddrinfo

