
CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Sockets, addresses and hostnames
CSE 333 Autumn 2025

Instructors: Naomi Alterman, Chris Thachuk

Teaching Assistants:

Ann Baturytski Derek de Leuw Blake Diaz

Rishabh Jain Chendur Jel Jayavelu Lucas Kwan

Irene Xin Jie Lau Nathan Li Maya Odenheim

Advay Patil Selim Saridede Deeksha Vatwani

Angela Wu Jiexiao Xu

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Administrivia

❖ HW3 due on Thursday

❖ Ex15 out today, due Friday

▪ Uses material we’ll learn throughout the week – start now and do in little chunks

2

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Lecture Outline

❖ Network Programming

▪ Sockets API

▪ Network Addresses

▪ DNS Lookup

3

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Files and File Descriptors

❖ Remember open(), read(), write(), and close()?

▪ POSIX system calls for interacting with files

▪ open() returns a file descriptor

• An integer that represents an open file

• This file descriptor is then passed to read(), write(), and close()

▪ Inside the OS, the file descriptor is used to index into a table that keeps track of any OS-

level state associated with the file, such as the file position

4

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Networks and Sockets

❖ UNIX likes to make all I/O look like file I/O

▪ You use read() and write() to communicate with remote computers over the

network!

▪ A file descriptor used for network communications is called a socket

▪ Just like with files:

• Your program can have multiple network channels open at once

• You need to pass a file descriptor to read() and write() to let the OS know which network

channel to use

5

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

File Descriptor Table

OS’s File Descriptor Table for the Process

File
Descriptor

Type Connection

0 pipe stdin (console)

1 pipe stdout (console)

2 pipe stderr (console)

3
TCP

socket
local: 128.95.4.33:80

remote: 44.1.19.32:7113

5 file index.html

8 file pic.png

9
TCP

socket
local: 128.95.4.33:80

remote: 102.12.3.4:5544

Web Server

in
d

ex
.h

tm
l

p
ic

.p
n

g

client client

128.95.4.33

fd 5 fd 8 fd 9 fd 3

6

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Types of Sockets

❖ Stream sockets

▪ For connection-oriented, point-to-point, reliable byte streams

• Using TCP, STCP, or other stream transports

❖ Datagram sockets

▪ For connection-less, one-to-many, unreliable packets

• Using UDP or other packet transports

❖ Raw sockets

▪ For layer-3 communication (raw IP packet manipulation)

7

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Stream Sockets

❖ Typically used for client-server communications

▪ Client: An application that establishes a connection to a server

▪ Server: An application that receives connections from clients

▪ Can also be used for other forms of communication like peer-

to-peer

1) Establish connection:

2) Communicate:

3) Close connection: client server

client server

8

client server

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Datagram Sockets

❖ Often used as a building block

▪ No flow control, ordering, or reliability, so used

less frequently

▪ e.g. streaming media applications or DNS lookups

1) Create sockets:

2) Communicate:

host

host host

host

host

host host

host

9

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

The Sockets API

❖ Berkeley sockets originated in 4.2BSD Unix (1983)

▪ It is the standard API for network programming

• Available on most OSs

▪ Written in C

❖ POSIX Socket API

▪ A slight update of the Berkeley sockets API

• A few functions were deprecated or replaced

• Better support for multi-threading was added

10

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Why is this all this way?

❖ DARPA wanted Unix systems to be able to

connect to their internet

▪ Hired a contractor to write the C code

▪ Hired a UC Berkeley student, Bill Joy, to “make the API”

▪ Bill didn’t know much about networking at the time, but

he figured it out (and then wrote all the C code himself

anyway)

❖ After this experience, Bill rage quit academia and

founded Sun Microsystems
▪ Read the full story: https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-

and-tcp-ip/

11

https://computeradsfromthepast.substack.com/p/unix
-review-interviews-sun-co-founder

https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/
https://klarasystems.com/articles/history-of-freebsd-part-4-bsd-and-tcp-ip/

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

(as an aside, thank your historians)

❖ In this case, Kirk McKusick and our very own Hal Perkins :3

12

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Our mission this week: send bytes over TCP using sockets

❖ We’ll start by looking at the API from the point of view of a client

connecting to a server over TCP

❖ There are five steps:

1) Figure out the IP address and port to which to connect

2) Create a socket

3) Connect the socket to the remote server

4) .read() and write() data using the socket

5) Close the socket

13

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Step 1: Figure Out IP Address and Port

❖ Several parts:

▪ Network addresses

▪ Data structures for address info

▪ DNS - Doman Name System – finding IP addresses

14

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

IPv4 Network Addresses

❖ An IPv4 address is a 4-byte tuple

▪ For humans, written in “dotted-decimal notation”

▪ e.g. 128.95.4.1 (80:5f:04:01 in hex)

❖ Each of those bytes has information about “which part” of the network the

machine is on

▪ Read left to right, the machine’s location gets more “network local”

▪ IPs with the same prefix are on the same “subnet,” which represents some abstract form

of locality

15

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

IPv6 Network Addresses

❖ An IPv6 address is a 16-byte tuple

▪ Typically written in “hextets” (groups of 4 hex digits)

• Can omit leading zeros in hextets

• Double-colon replaces consecutive sections of zeros

▪ e.g. 2d01:0db8:f188:0000:0000:0000:0000:1f33

• Shorthand: 2d01:db8:f188::1f33

▪ Transition is still ongoing

• IPv4-mapped IPv6 addresses

– 128.95.4.1 mapped to ::ffff:128.95.4.1 or ::ffff:805f:401

• This unfortunately makes network programming more of a headache 

16

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Linux Socket Addresses

❖ Structures, constants, and helper functions available in:
#include <arpa/inet.h>

❖ Addresses stored in network byte order (big endian)

❖ Converting between host and network byte orders:
▪ uint32_t htonl(uint32_t hostlong);

▪ uint32_t ntohl(uint32_t netlong);

• ‘h’ for host byte order and ‘n’ for network byte order

• Also versions with ‘s’ for short (uint16_t)

❖ How to handle both IPv4 and IPv6?
▪ Use C structs for each, but make them somewhat similar

▪ Use defined constants to differentiate when to use each: AF_INET for IPv4 and AF_INET6 for
IPv6
• (Crude way to fake inheritance-like behavior in languages without it)

17

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

IPv4 Address Structures

18

// IPv4 4-byte address

struct in_addr {

 uint32_t s_addr; // Address in network byte order

};

// An IPv4-specific address structure

struct sockaddr_in {

 sa_family_t sin_family; // Address family: AF_INET

 in_port_t sin_port; // Port in network byte order

 struct in_addr sin_addr; // IPv4 address

 unsigned char sin_zero[8]; // Pad out to 16 bytes

};

family port addr zero

struct sockaddr_in:

160 2 4 8

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

IPv6 Address Structures

19

// IPv6 16-byte address

struct in6_addr {

 uint8_t s6_addr[16]; // Address in network byte order

};

// An IPv6-specific address structure

struct sockaddr_in6 {

 sa_family_t sin6_family; // Address family: AF_INET6

 in_port_t sin6_port; // Port number

 uint32_t sin6_flowinfo; // IPv6 flow information

 struct in6_addr sin6_addr; // IPv6 address

 uint32_t sin6_scope_id; // Scope ID

};

fam port flow scope

struct sockaddr_in6:
addr

240 2 4 8 28

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Generic Address Structures

▪ Commonly create struct sockaddr_storage, then pass pointer cast as struct

sockaddr* to connect()

20

// A mostly-protocol-independent address structure.

// Pointer to this is parameter type for socket system calls.

struct sockaddr {

 sa_family_t sa_family; // Address family (AF_* constants)

 char sa_data[14]; // Socket address (size varies

 // according to socket domain)

};

// A structure big enough to hold either IPv4 or IPv6 structs

struct sockaddr_storage {

 sa_family_t ss_family; // Address family

 // padding and alignment; don’t worry about the details

 char __ss_pad1[_SS_PAD1SIZE];

 int64_t __ss_align;

 char __ss_pad2[_SS_PAD2SIZE];

};

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts human-readable string representation (“presentation”)

to network byte ordered address

▪ Returns 1 (success), 0 (bad src), or -1 (error)

21

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

 struct sockaddr_in sa; // IPv4

 struct sockaddr_in6 sa6; // IPv6

 // IPv4 string to sockaddr_in (192.0.2.1 = C0:00:02:01).

 inet_pton(AF_INET, "192.0.2.1", &(sa.sin_addr));

 // IPv6 string to sockaddr_in6.

 inet_pton(AF_INET6, "2001:db8:63b3:1::3490", &(sa6.sin6_addr));

 return EXIT_SUCCESS;

}

genaddr.cc

int inet_pton(int af, const char* src, void* dst);

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Address Conversion

❖ int inet_pton(int af, const char* src, void* dst);

▪ Converts network addr in src into buffer dst of size size

22

#include <stdlib.h>

#include <arpa/inet.h>

int main(int argc, char **argv) {

 struct sockaddr_in6 sa6; // IPv6

 char astring[INET6_ADDRSTRLEN]; // IPv6

 // IPv6 string to sockaddr_in6.

 inet_pton(AF_INET6, "2001:0db8:63b3:1::3490", &(sa6.sin6_addr));

 // sockaddr_in6 to IPv6 string.

 inet_ntop(AF_INET6, &(sa6.sin6_addr), astring, INET6_ADDRSTRLEN);

 std::cout << astring << std::endl;

 return EXIT_SUCCESS;

}

genstring.cc

const char* inet_ntop(int af, const void* src,

 char* dst, socklen_t size);

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Domain Name System

❖ People tend to use DNS names, not IP addresses

▪ The Sockets API lets you convert between the two

▪ It’s a complicated process, though:

• A given DNS name can have many IP addresses

• Many different IP addresses can map to the same DNS name

– An IP address will reverse map into at most one DNS name

• A DNS lookup may require interacting with many DNS servers

❖ You can use the Linux program “dig” to explore DNS

▪ dig @server name type (+short)

• server: specific name server to query

• type: A (IPv4), AAAA (IPv6), ANY (includes all types)

24

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

DNS Hierarchy

25

.

mail newsdocs www

cncom orgedu • • •

google netflixfacebook • • • wikipedia fsfapache • • •

Root
Name Servers

Top-level
Domain Servers

• • • news www• • •

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

Resolving DNS Names

❖ The POSIX way is to use getaddrinfo()

▪ A complicated system call found in #include <netdb.h>

▪ Basic idea:

• Tell getaddrinfo() which host and port you want resolved

– String representation for host: DNS name or IP address

• Set up a “hints” structure with constraints you want respected

• getaddrinfo() gives you a list of results packed into an “addrinfo” structure/linked list

– Returns 0 on success; returns negative number on failure

• Free the struct addrinfo list later using freeaddrinfo()

26

int getaddrinfo(const char* hostname,

 const char* service,

 const struct addrinfo* hints,

 struct addrinfo** res);

CSE333, Autumn 2025L20: Sockets, addresses and hostnames

getaddrinfo

❖ getaddrinfo() arguments:

▪ hostname – domain name or IP address string

▪ service – port # (e.g. "80") or service name (e.g. "www")

 or NULL/nullptr

▪

▪ See dnsresolve.cc

27

struct addrinfo {

 int ai_flags; // additional flags

 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC

 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM, 0

 int ai_protocol; // IPPROTO_TCP, IPPROTO_UDP, 0

 size_t ai_addrlen; // length of socket addr in bytes

 struct sockaddr* ai_addr; // pointer to socket addr

 char* ai_canonname; // canonical name

 struct addrinfo* ai_next; // can form a linked list

};

	Slide 1: Sockets, addresses and hostnames CSE 333 Autumn 2025
	Slide 2: Administrivia
	Slide 3: Lecture Outline
	Slide 4: Files and File Descriptors
	Slide 5: Networks and Sockets
	Slide 6: File Descriptor Table
	Slide 7: Types of Sockets
	Slide 8: Stream Sockets
	Slide 9: Datagram Sockets
	Slide 10: The Sockets API
	Slide 11: Why is this all this way?
	Slide 12: (as an aside, thank your historians)
	Slide 13: Our mission this week: send bytes over TCP using sockets
	Slide 14: Step 1: Figure Out IP Address and Port
	Slide 15: IPv4 Network Addresses
	Slide 16: IPv6 Network Addresses
	Slide 17: Linux Socket Addresses
	Slide 18: IPv4 Address Structures
	Slide 19: IPv6 Address Structures
	Slide 20: Generic Address Structures
	Slide 21: Address Conversion
	Slide 22: Address Conversion
	Slide 24: Domain Name System
	Slide 25: DNS Hierarchy
	Slide 26: Resolving DNS Names
	Slide 27: getaddrinfo

